Publications by authors named "Jean-Jacques Yaouanc"

We studied the physicochemical properties of some cationic lipophosphoramidates used as gene vectors in an attempt to better understand the link between the nature of the hydrophobic chain and both physico-chemical properties and transfection efficiency. These compounds have an arsonium head group and various chain lengths and unsaturation numbers. The synthesis of cationic phospholipids with oleic (Guenin et al.

View Article and Find Full Text PDF

We report for the first time preparation of mannosylated and histidylated lipopolyplexes (Man-LPD100) with uptake and transfection selectivity for dendritic cells (DCs). Man-LPD100 were prepared by addition of mannosylated and histidylated liposomes (Man-Lip100) on preformed PEGylated histidylated polylysine/DNA polyplexes. Man-Lip100 comprised a cationic [O,O-dioleyl-N-(3N-(N-methylimidazolium iodide)propylene) phosphoramidate)] lipid, a neutral [O,O-dioleyl-N-histamine Phosphoramidate] co-lipid and β-D-mannopyranosyl-N-dodecylhexadecanamide (Man-lipid).

View Article and Find Full Text PDF

Cationic lipophosphoramidates constitute a class of cationic lipids we have previously reported to be efficient for gene transfection. Here, we synthesized and studied a novel lipophosphoramidate derivative characterized by an arsonium headgroup linked, via a phosphoramidate linker, to an unconventional lipidic moiety consisting of two diunsaturated linoleic chains. Physicochemical studies allowed us to comparatively evaluate the specific fluidity and fusogenicity properties of the liposomes formed.

View Article and Find Full Text PDF

We report the syntheses of novel cationic lipids comprised of cholesteryl-moieties linked to guanidinium functional groups, and also cationic lipids comprising a dialkylglycylamide moiety conjugated with a polyamine or a guanidinium functional group. In plasmid DNA (pDNA) transfection studies, these cationic lipids were formulated into cationic liposomes with the neutral co-lipid dioleoyl-L-alpha-phosphatidylethanolamine (DOPE) or with a recently reported neutral lipophosphoramidate derivative of histamine (MM27). We observe that cationic liposomes prepared from the cationic lipid N',N'-dioctadecyl-N-4,8-diaza-10-aminodecanoylglycine amide (DODAG) and DOPE frequently mediate the highest levels of transfection in vitro in all three different cell lines studied (OVCAR-3, IGROV-1 and HeLa) both in the presence or absence of serum.

View Article and Find Full Text PDF

DNA/cationic lipid (lipoplexes), DNA/cationic polymer (polyplexes) and DNA/cationic polymer/cationic lipid (lipopolyplexes) electrostatic complexes are proposed as non-viral nucleic acids delivery systems. These DNA-nanoparticles are taken up by the cells through endocytosis processes, but the low capacity of DNA to escape from endosomes is regarded as the major limitations of their transfection efficiency. Here, we present a current report on a particular class of carriers including the polymers, peptides and lipids, which is based on the exploitation of the imidazole ring as an endosome destabilization device to favour the nucleic acids delivery in the cytosol.

View Article and Find Full Text PDF

Over the last several years, various gene delivery systems have been developed for gene therapy applications. Although viral vector-based gene therapy has led to the greatest achievements in animal and human studies, synthetic non-viral vectors have also been developed as they offer several advantages over viral systems, including lower immunogenicity and greater nucleic acid packaging capacity. Nevertheless, the transfection efficiency of the current non-viral gene carriers still needs to be improved, especially as regards direct in vivo transfection.

View Article and Find Full Text PDF

New helper lipids, possessing an imidazole polar head, have been synthesized and included in formulations for transfection assays; these new helper lipids can improve the transfection by a factor of up to 100 compared to the use of DOPE as co-lipid.

View Article and Find Full Text PDF

In an effort to enhance the gene-transfer efficiencies of cationic lipids and to decrease their toxicities, a series of new phosphoramidate lipids with chemical similarity to cell membrane phospholipids was synthesised. These lipids contained various cationic headgroups, such as arginine methyl ester, lysine methyl ester, homoarginine methyl ester, ethylenediamine, diaminopropane, guanidinium and imidazolium. Their transfection abilities, either alone or with the co-lipid DOPE, were evaluated in HEK293-T7 cells.

View Article and Find Full Text PDF

We report here a study on the physicochemical properties of cationic phospholipids liposomes used for lipoplex formulation and DNA transfer. The original cationic phospholipids synthesized in our laboratory are first presented with the liposome formulation process. The second part deals with the liposomes fusogenic properties studied by fluorescence resonant energy transfer (FRET).

View Article and Find Full Text PDF

Lipophosphoramidates with two different permanent cations as polar heads were synthesized and evaluated for their gene transfer activity. Physicochemical measurements (particle size, zeta potentials) and gel retardation assays were also performed. In vitro biological evaluation was conducted with A542 and HeLa cell lines, and cytotoxicity determined by a chemiluminescent assay.

View Article and Find Full Text PDF

A series of cationic liposomes known as cationic phosphonolipids (CPs) were evaluated as vehicles for in vitro gene transfer in K562 erythroleukemia cells and 5637 epithelial carcinoma cells. For each CP and target cell type examined, detailed analyses were performed to determine optimal transfection conditions (lipid/ DNA (+/-) charge ratio, amount of complexed episomal DNA, liposomal and lipoplex size, complexation medium and duration of complex-cell exposure time). Lipofection conditions were determined to be both cell- and lipid-type specific.

View Article and Find Full Text PDF

Two new families of cationic lipids were designed and synthesized for gene delivery, namely "lipophosphoramidates" and "lipophosphoguanidines", whose efficiency was noteworthy. The most efficient have an arsonium cation as the polar head, and the unsaturated lipidic tails (e.g.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is the most common autosomal lethal recessive disorder in the Caucasian population. The major cause of mortality is lung disease, owing to the failure of a functional protein from the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Today, even though the knowledge about the CFTR genomic is extensive, no efficient treatment has been developed yet.

View Article and Find Full Text PDF

Gene therapy is a promising field of research and biotechnological development. Considering their safety and non-immunogenicity, cationic lipids are widely used for gene transfer in vitro and show promise for in vivo gene transfer applications. However, a better understanding of the mechanisms by which transfection occurs and the limiting steps in cellular transfer of foreign DNA are critical for significant improvements of gene transfer.

View Article and Find Full Text PDF