Publications by authors named "Jean-Jacques Sauvain"

Particulate Matter (PM) is the most toxic component in polluted air causing over 6 million deaths per year worldwide according to World Health Organisation estimates. Due to the highly complex composition of PM in the atmosphere, with thousands of inorganic and especially organic components, it is unknown which particle sources are responsible for their toxicity. In recent years it emerged that overall oxidising particle properties might directly link particle composition with health effects.

View Article and Find Full Text PDF
Article Synopsis
  • Exposure assessments of metalworking fluids (MWF) can be challenging due to their complex nature; this study aimed to evaluate both straight and water-based MWF exposure among workers in 20 workshops.
  • The research measured metal and organic carbon content in both new and used MWF, and analyzed air samples for particulate matter, metals, organic carbon, and aldehydes over full work shifts.
  • Key findings indicated that while inhalable particle exposure levels were similar for both types of MWF, the gaseous fraction was a significant contributor to overall exposure, highlighting the need for better management and control measures to reduce harmful gaseous emissions.
View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the use of nitrosative/oxidative stress and metabolic biomarkers in exhaled breath condensate (EBC) to help diagnose chronic obstructive pulmonary disease (COPD), which is a major health issue affecting millions globally.
  • - A cohort of 303 participants, mostly transit workers, underwent spirometry testing, with 7% being diagnosed with COPD, including mostly mild cases, highlighting difficulties in early detection.
  • - Two specific biomarkers, Lactate and Malondialdehyde (MDA), showed promise in distinguishing COPD patients from non-COPD individuals with high accuracy, suggesting EBC testing could improve non-invasive COPD diagnostics in the future.
View Article and Find Full Text PDF

Objective: In this pilot study on subway workers, we explored the relationships between particle exposure and oxidative stress biomarkers in exhaled breath condensate (EBC) and urine to identify the most relevant biomarkers for a large-scale study in this field.

Methods: We constructed a comprehensive occupational exposure assessment among subway workers in three distinct jobs over 10 working days, measuring daily concentrations of particulate matter (PM), their metal content and oxidative potential (OP). Individual pre- and post-shift EBC and urine samples were collected daily.

View Article and Find Full Text PDF

Oxidative stress is a prominent pathway for the health effects associated with fine particulate matter (PM) exposure. Oxidative potential (OP) of PM has been associated to several health endpoints, but studies on its impact on biomarkers of oxidative stress remains insufficient. 300 pregnant women from the SEPAGES cohort (France) carried personal PM samplers for a week and OP was measured using ascorbic acid (AA) and dithiothreitol (DTT) assays, and normalized by 1) PM mass (OP) and 2) sampled air volume (OP).

View Article and Find Full Text PDF

The current evidence on nanomaterial toxicity is mostly derived from experimental studies making it challenging to translate it into human health risks. We established an international cohort (N = 141 workers) within the EU-LIFE project "NanoExplore" to address possible health effects from occupational exposures to nanomaterials. We used a handheld direct-reading optical particle counter to measure airborne nanoparticle number concentrations (PNC) and lung-deposited surface areas (LDSAs).

View Article and Find Full Text PDF

Nanotechnology applications are fast-growing in many industrial fields. Consequently, health effects of engineered nanomaterials (ENMs) should be investigated. Within the EU-Life project NanoExplore, we developed a harmonized protocol of an international multicenter prospective cohort study of workers in ENM-producing companies.

View Article and Find Full Text PDF

Hydrogen peroxide (H2O2) is a strong oxidizing agent often used in hair coloring and as a component in disinfecting and bleaching processes. Exposures to H2O2 generate reactive oxygen species (ROS) that can cause significant airway irritation and inflammation. Even though workers have reported symptoms associated with sensitivity and irritation from acute exposures below the H2O2 occupational exposure levels (OELs), a lack of sensitive analytical methods for measuring airborne concentrations currently prevents evaluating low or peak H2O2 exposures.

View Article and Find Full Text PDF

Oxidative stress can contribute to the development of diseases, and may originate from exposures to toxicants commonly found in air pollution and cigarette smoke such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Yet, associations between these exposures and oxidative stress biomarkers are poorly characterized. We report here novel associations between 14 exposure biomarkers of PAHs and VOCs, and two oxidative stress biomarkers; 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-isoprostaglandin F (8-isoprostane) in urine obtained from smokers participating in an ongoing clinical study (ESTxENDS, NCT03589989).

View Article and Find Full Text PDF

Exhaled breath condensate (EBC) has attracted substantial interest in the last few years, enabling the assessment of airway inflammation with a non-invasive method. Concentrations of 8-Hydroxydesoxyguanosine (8-OHdG) and 8-isoprostane in EBC have been suggested as candidate biomarkers for lung diseases associated with inflammation and oxidative stress. EBC is a diluted biological matrix and consequently, requires highly sensitive chemical analytic methods (picomolar range) for biomarker quantification.

View Article and Find Full Text PDF

Many pathological conditions and certain airway exposures are associated with oxidative stress (OS). Malondialdehyde (MDA) is an end-product of the oxidation of lipids in our cells and is present in all biological matrices including exhaled breath condensate (EBC). To use MDA as a biomarker of OS in EBC, a reference interval should be defined.

View Article and Find Full Text PDF

Oxidative stress has been associated with various inflammation-related human diseases. It is defined as an imbalance between the production and elimination of reactive oxygen species (ROS). ROS can oxidize proteins, lipids, and DNA, and some of these oxidized products are excreted in urine, such as malondialdehyde (MDA), which is considered a biomarker for oxidative damage of lipids.

View Article and Find Full Text PDF

Background: Underground transportation systems can contribute to the daily particulates and metal exposures for both commuter and subway workers. The redox and metabolic changes in workers exposed to such metal-rich particles have yet to be characterized. We hypothesize that the distribution of nitrosative/oxidative stress and related metabolic biomarkers in exhaled breath condensate (EBC) are modified depending on exposures.

View Article and Find Full Text PDF

There are several methods for quantifying malondialdehyde (MDA), an oxidative stress biomarker, in exhaled breath condensate (EBC). However, due to the very diluted nature of this biological matrix, a high variability is observed at low concentrations. We aimed to optimize a 2,4-dinitrophenylhydrazine-based method using liquid chromatography coupled to tandem mass spectrometry and characterize the uncertainty associated with this method.

View Article and Find Full Text PDF

There is increasing evidence of SARS-CoV-2 transmission via aerosol; the number of cases of transmission via this route reported in the literature remains however limited. This study examines a case of clustering that occurred in a courtroom, in which 5 of the 10 participants were tested positive within days of the hearing. Ventilation loss rates and dispersion of fine aerosols were measured through CO injections and lactose aerosol generation.

View Article and Find Full Text PDF

The oxidative potential (OP) measures the ability of pollutants to oxidize a chemical/biological probe. Such assays are starting to gain acceptance as integrative exposure metrics associated with inflammatory-based pathologies. Diseases such as asthma, rhinitis or cancers are reported for workers exposed to oil mist, which are aerosols of metal working fluids (MWF) emitted during the machining of metals.

View Article and Find Full Text PDF

Production and handling of engineered nanomaterials (ENMs) can yield worker exposure to these materials with the potential for unforeseen negative health effects. Biomonitoring enables regular exposure and health assessment and an effective risk management. We aimed to identify factors influencing biomonitoring acceptance according to hierarchical positions of ENM producers.

View Article and Find Full Text PDF

Purpose: Central serous chorioretinopathy (CSCR) has been associated with oxidative stress-related risk factors. The objective of this study was to optimize an analytical method for evaluating the oxidative stress biomarker malondialdehyde (MDA) in human tears and determine its level in the tears of patients with CSCR.

Methods: In this pilot study, tear samples were obtained from 34 healthy donors and 31 treatment-naïve CSCR male patients (eight with acute CSCR and 23 with chronic CSCR).

View Article and Find Full Text PDF

Isoprostanes are physiopathologic mediators of oxidative stress, resulting in lipid peroxidation. 8-isoprostane seems particularly useful for measuring oxidative stress damage. However, no reference range values are available for 8-isoprosante in exhaled breath condensate (EBC) of healthy adults, enabling its meaningful interpretation as a biomarker.

View Article and Find Full Text PDF

Oxidative stress reflects a disturbance in the balance between the production and accumulation of reactive oxygen species (ROS). ROS are scavenged by the antioxidant system, but when in excess concentration, they can oxidize proteins, lipids, and DNA. DNA damage is usually repaired, and the oxidized products are excreted in urine.

View Article and Find Full Text PDF

Background: Exposure to aerosols from metalworking fluids (MWF) has previously been related to a series of adverse health outcomes (eg, cancer, respiratory diseases). Our present epidemiological study focuses on occupational exposures to MWF and a panel of exposure and effect biomarkers. We hypothesize that these health outcomes are caused by particle exposure that generates oxidative stress, leading to airway inflammation and ultimately to chronic respiratory diseases.

View Article and Find Full Text PDF

The analytical capability to detect hydrogen peroxide vapour can play a key role in localizing a site where a H2O2 based Improvised Explosive (IE) is manufactured. In security activities it is very important to obtain information in a short time. For this reason, an analytical method to be used in security activity needs portable devices.

View Article and Find Full Text PDF

Background: Tungsten inert gas (TIG) welding represents one of the most widely used metal joining processes in industry. It has been shown to generate a large majority of particles at the nanoscale and to have low mass emission rates when compared to other types of welding. Despite evidence that TIG fume particles may produce reactive oxygen species (ROS), limited data is available for the time course changes of particle-associated oxidative stress in exposed TIG welders.

View Article and Find Full Text PDF