Publications by authors named "Jean-Jacques Meister"

Actin-myosin filament bundles (stress fibers) are critical for tension generation and cell shape, but their mechanical properties are difficult to access. Here we propose a novel approach to probe individual peripheral stress fibers in living cells through a microsurgically generated opening in the cytoplasm. By applying large deformations with a soft cantilever we were able to fully characterize the mechanical response of the fibers and evaluate their tension, extensibility, elastic and viscous properties.

View Article and Find Full Text PDF

The mechanical interaction between adherent cells and their substrate relies on the formation of adhesion sites and on the stabilization of contractile acto-myosin bundles, or stress fibers. The shape of the cell and the orientation of these fibers can be controlled by adhesive patterning. On nonadhesive gaps, fibroblasts develop thick peripheral stress fibers, with a concave curvature.

View Article and Find Full Text PDF

Actin-myosin microfilament bundles or stress-fibers are the principal tension-generating structures in the cell. Their mechanical properties are critical for cell shape, motion, and interaction with other cells and extracellular matrix, but were so far difficult to access in a living cell. Here we propose a micro-fabricated two-component setup for direct tension measurement on a peripheral bundle within an intact cell.

View Article and Find Full Text PDF

Plasma membrane tension and the pressure generated by actin polymerization are two antagonistic forces believed to define the protrusion rate at the leading edge of migrating cells [1-5]. Quantitatively, resistance to actin protrusion is a product of membrane tension and mean local curvature (Laplace's law); thus, it depends on the local geometry of the membrane interface. However, the role of the geometry of the leading edge in protrusion control has not been yet investigated.

View Article and Find Full Text PDF

Changes in the mechanical properties of dermis occur during skin aging or tissue remodeling and affect the activity of resident fibroblasts. With the aim to establish elastic culture substrates that reproduce the variable softness of dermis, we determined Young's elastic modulus E of human dermis at the cell perception level using atomic force microscopy. The E of dermis ranged from 0.

View Article and Find Full Text PDF

Communication between vascular smooth muscle cells (SMCs) allows control of their contraction and so regulation of blood flow. The contractile state of SMCs is regulated by cytosolic Ca2+ concentration ([Ca2+]i) which propagates as Ca2+ waves over a significant distance along the vessel. We have characterized an intercellular ultrafast Ca2+ wave observed in cultured A7r5 cell line and in primary cultured SMCs (pSMCs) from rat mesenteric arteries.

View Article and Find Full Text PDF

Intercellular Ca(2+) wave propagation between vascular smooth muscle cells (SMCs) is associated with the propagation of contraction along the vessel. Here, we characterize the involvement of gap junctions (GJs) in Ca(2+) wave propagation between SMCs at the cellular level. Gap junctional communication was assessed by the propagation of intercellular Ca(2+) waves and the transfer of Lucifer Yellow in A7r5 cells, primary rat mesenteric SMCs (pSMCs), and 6B5N cells, a clone of A7r5 cells expressing higher connexin43 (Cx43) to Cx40 ratio.

View Article and Find Full Text PDF

Background: TGF-β1 controls many pathophysiological processes including tissue homeostasis, fibrosis, and cancer progression. Together with its latency-associated peptide (LAP), TGF-β1 binds to the latent TGF-β1-binding protein-1 (LTBP-1), which is part of the extracellular matrix (ECM). Transmission of cell force via integrins is one major mechanism to activate latent TGF-β1 from ECM stores.

View Article and Find Full Text PDF

We propose a new technique to measure the volume of adherent migrating cells. The method is based on a negative staining where a fluorescent, non-cell-permeant dye is added to the extracellular medium. The specimen is observed with a conventional fluorescence microscope in a chamber of uniform height.

View Article and Find Full Text PDF

Smooth muscle contraction is regulated by changes in cytosolic Ca(2+) concentration ([Ca(2+)](i)). In response to stimulation, Ca(2+) increase in a single cell can propagate to neighbouring cells through gap junctions, as intercellular Ca(2+) waves. To investigate the mechanisms underlying Ca(2+) wave propagation between smooth muscle cells, we used primary cultured rat mesenteric smooth muscle cells (pSMCs).

View Article and Find Full Text PDF

Cells with irregular shapes, numerous long thin filaments, and morphological similarities to the gastrointestinal interstitial cells of Cajal (ICCs) have been observed in the wall of some blood vessels. These ICC-like cells (ICC-LCs) do not correspond to the other cell types present in the arterial wall: smooth muscle cells (SMCs), endothelial cells, fibroblasts, inflammatory cells, or pericytes. However, no clear physiological role has as yet been determined for ICC-LCs in the vascular wall.

View Article and Find Full Text PDF

In rat mesenteric arteries, smooth muscle cells exhibit intercellular calcium waves in response to local phenylephrine stimulation. These waves have a velocity of approximately 20 cells/s and a range of approximately 80 cells. We analyze these waves in a theoretical model of a population of coupled smooth muscle cells, based on the hypothesis that the wave results from cell membrane depolarization propagation.

View Article and Find Full Text PDF

Myofibroblasts promote tissue contractures during fibrotic diseases. To understand how spontaneous changes in the intracellular calcium concentration, [Ca(2+)](i), contribute to myofibroblast contraction, we analysed both [Ca(2+)](i) and subcellular contractions. Contractile events were assessed by tracking stress-fibre-linked microbeads and measured by atomic force microscopy.

View Article and Find Full Text PDF

During cell migration, forces generated by the actin cytoskeleton are transmitted through adhesion complexes to the substrate. To investigate the mechanism of force generation and transmission, we analyzed the relationship between actin network velocity and traction forces at the substrate in a model system of persistently migrating fish epidermal keratocytes. Front and lateral sides of the cell exhibited much stronger coupling between actin motion and traction forces than the trailing cell body.

View Article and Find Full Text PDF

Vasomotion consists of cyclic arterial diameter variations induced by synchronous contractions and relaxations of smooth muscle cells. However, the arteries do not contract simultaneously on macroscopic distances, and a propagation of the contraction can be observed. In the present study, our aim was to investigate this propagation.

View Article and Find Full Text PDF

Strain devices with expandable polydimethylsiloxane (PDMS) culture membranes are frequently used to stretch cells in vitro, mimicking mechanically dynamic tissue environments. To immobilize cell-adhesive molecules to the otherwise non-adhesive PDMS substrate, hydrophobic, electrostatic and covalent surface coating procedures have been developed. The efficacy of different coating strategies to transmit stretches to cells however is poorly documented and has not been compared.

View Article and Find Full Text PDF

Neoformation of intercellular adherens junctions accompanies the differentiation of fibroblasts into contractile myofibroblasts, a key event during development of fibrosis and in wound healing. We have previously shown that intercellular mechanical coupling of stress fibres via adherens junctions improves contraction of collagen gels by myofibroblasts. By assessing spontaneous intracellular Ca2+ oscillations, we here test whether adherens junctions mechanically coordinate myofibroblast activities.

View Article and Find Full Text PDF

Dynamic actin network at the leading edge of the cell is linked to the extracellular matrix through focal adhesions (FAs), and at the same time it undergoes retrograde flow with different dynamics in two distinct zones: the lamellipodium (peripheral zone of fast flow), and the lamellum (zone of slow flow located between the lamellipodium and the cell body). Cell migration involves expansion of both the lamellipodium and the lamellum, as well as formation of new FAs, but it is largely unknown how the position of the boundary between the two flow zones is defined, and how FAs and actin flow mutually influence each other. We investigated dynamic relationship between focal adhesions and the boundary between the two flow zones in spreading cells.

View Article and Find Full Text PDF

In vitro, different techniques are used to study the smooth muscle cells' calcium dynamics and contraction/relaxation mechanisms on arteries. Most experimental studies use either an isometric or an isobaric setup. However, in vivo, a blood vessel is neither isobaric nor isometric nor isotonic, as it is continuously submitted to intraluminal pressure variations arising from heart beat.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how the endothelium, a layer of cells lining blood vessels, can influence vasomotion, which is the rhythmic contraction and relaxation of arteries.
  • Experiments on rat mesenteric arteries show that the endothelium is not essential for vasomotion but can either promote or suppress it depending on the circumstances.
  • The findings help clarify previous contradictory research and establish that endothelium-derived factors play a critical role in regulating vasomotion.
View Article and Find Full Text PDF

We have previously shown that the switch from N-cadherin to OB-cadherin expression increases intercellular adhesion between fibroblasts during their transition from a migratory to a fibrogenic phenotype. Using atomic force microscopy we here show that part of this stronger adhesion is accomplished because OB-cadherin bonds resist approximately twofold higher forces compared with N-cadherin junctions. By assessing the adhesion force between recombinant cadherin dimers and between native cadherins in the membrane of spread fibroblasts, we demonstrate that cadherin bonds are reinforced over time with two distinct force increments.

View Article and Find Full Text PDF

The conjunctive presence of mechanical stress and active transforming growth factor beta1 (TGF-beta1) is essential to convert fibroblasts into contractile myofibroblasts, which cause tissue contractures in fibrotic diseases. Using cultured myofibroblasts and conditions that permit tension modulation on the extracellular matrix (ECM), we establish that myofibroblast contraction functions as a mechanism to directly activate TGF-beta1 from self-generated stores in the ECM. Contraction of myofibroblasts and myofibroblast cytoskeletons prepared with Triton X-100 releases active TGF-beta1 from the ECM.

View Article and Find Full Text PDF

To understand the mechanism of cell migration, one needs to know how the parts of the motile machinery of the cell are assembled and how they move with respect to each other. Actin and myosin II are thought to be the major structural and force-generating components of this machinery (Mitchison and Cramer, 1996; Parent, 2004). The movement of myosin II along actin filaments is thought to generate contractile force contributing to cell translocation, but the relative motion of the two proteins has not been investigated.

View Article and Find Full Text PDF

Protrusion of lamellipodia during cell migration depends on the assembly of actin network. The assembly mechanism, based on dendritic filament branching, has been investigated in reconstituted in vitro systems, but little is known about the dynamical and structural properties of the actin network in the lamellipodia of migrating cells. The length and orientation of filaments are difficult to measure directly in either optical or electron microscopy images because of the high filament density and overlapping of individual filaments.

View Article and Find Full Text PDF

Smooth muscle and endothelial cells in the arterial wall are exposed to mechanical stress. Indeed blood flow induces intraluminal pressure variations and shear stress. An increase in pressure may induce a vessel contraction, a phenomenon known as the myogenic response.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionk7qf0elnkjes5708rmsu1309qn6sca57): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once