Publications by authors named "Jean-Jacques Godon"

Surface seawater, collected from three fishing harbors during different seasons of the years 2015, 2016 and 2017, were assessed for physico-chemical analyses. Results showed that seawater was mainly polluted by hydrocarbons and some heavy metals. Microbial communities' composition and abundance in the studied harbors were performed using molecular approaches.

View Article and Find Full Text PDF
Article Synopsis
  • The research focuses on treating tannery wastewater using an upflow microbial fuel cell (UMFC) under saline conditions (4%), evaluating various organic loads (OL).
  • At optimal organic load of 1.8 gCOD/L, the study achieved significant removal rates of total chemical oxygen demand (TCOD) and total suspended solids (TSS), along with maximal power production.
  • The findings highlight the potential of halophilic bacteria in efficiently treating saline tannery wastewater while generating bioenergy, indicating that 1.8 gCOD/L is the best condition for both treatment and energy output.
View Article and Find Full Text PDF

The bacterial consumption of viruses not been reported on as of yet even though bacteria feed on almost anything. Viruses are widely distributed but have no acknowledged active biocontrol. Viral biomass undoubtedly reintegrates trophic cycles; however, the mechanisms of this phase still remain unknown.

View Article and Find Full Text PDF

Metabarcoding of the 16S rRNA gene is commonly used to characterize microbial communities, by estimating the relative abundance of microbes. Here, we present a method to retrieve the concentrations of the 16S rRNA gene per gram of any environmental sample using a synthetic standard in minuscule amounts (100 ppm to 1% of the 16S rRNA sequences) that is added to the sample before DNA extraction and quantified by two quantitative polymerase chain reaction (qPCR) reactions. This allows normalizing by the initial microbial density, taking into account the DNA recovery yield.

View Article and Find Full Text PDF

Microbial consortia producing specific enzymatic cocktails are present in the gut of phytophagous and xylophagous insects; they are known to be the most efficient ecosystems to degrade lignocellulose. Here, the ability of these consortia to degrade lignocellulosic biomass in anaerobic bioreactors was characterized in term of bioprocess performances, enzymatic activities and bacterial community structure. In a preliminary screening, guts of (beetle), (chafer), (cockroach), (locust), and (cricket) were inoculated in anaerobic batch reactors, in presence of grounded wheat straw at neutral pH.

View Article and Find Full Text PDF

In soilless culture, slow filtration is used to eliminate plant pathogenic microorganisms from nutrient solutions. The present study focused on the characterization and the potential functions of microbial communities colonizing the nutrient solutions recycled on slow filters during a whole cultivation season of 7 months in a tomato growing system. Bacterial microflora colonizing the solutions before and after they flew through the columns were studied.

View Article and Find Full Text PDF

Clean-up of contaminated wastewater remains to be a major challenge in petroleum refinery. Here, we describe the capacity of a bacterial consortium enriched from crude oil drilling site in Al-Khobar, Saudi Arabia, to utilize polycyclic aromatic hydrocarbons (PAHs) as sole carbon source at 60°C. The consortium reduced low molecular weight (LMW; naphthalene, phenanthrene, fluorene and anthracene) and high molecular weight (HMW; pyrene, benzo(e)pyrene and benzo(k)fluoranthene) PAH loads of up to 1.

View Article and Find Full Text PDF

The development of economically-efficient microbial electrochemical technologies remains hindered by the low ionic conductivity of the culture media used as the electrolyte. To overcome this drawback, halotolerant bioanodes were designed with salt marsh sediment used as the inoculum in electrolytes containing NaCl at 30 or 45g/L (ionic conductivity 7.0 or 10.

View Article and Find Full Text PDF

A physico-chemical characterization of seawater taken from the fishing harbour of Sfax, Tunisia, revealed a contamination by organic and inorganic micropollutants. An aerobic marine halotolerant Bacillus stratosphericus strain FLU5 was isolated after enrichment on fluoranthene, a persistent and toxic polycyclic aromatic hydrocarbon (PAH). GC-MS analyses showed that strain FLU5 was capable of degrading almost 45 % of fluoranthene (100 mg l(-1)), without yeast extract added, after 30 days of incubation at 30 g l(-1) NaCl and 37 °C.

View Article and Find Full Text PDF

Background: One of the central issues in microbial ecology is to understand the parameters that drive diversity. Among these parameters, size has often been considered to be the main driver in many different ecosystems. Surprisingly, the influence of size on gut microbial diversity has not yet been investigated, and so far in studies reported in the literature only the influences of age, diet, phylogeny and digestive tract structures have been considered.

View Article and Find Full Text PDF
Article Synopsis
  • * Dominant bacterial phyla included Firmicutes, Proteobacteria, and Bacteroidetes, which comprised significant portions of the total bacteria identified.
  • * New species and genera were discovered, with three unique bacteria that play a role in the anaerobic digestion process being published as key findings.
View Article and Find Full Text PDF

The effect of increasing the organic loading rates (OLRs) on the performance of the anaerobic codigestion of olive mill (OMW) and abattoir wastewaters (AW) was investigated under mesophilic and thermophilic conditions. The structure of the microbial community was also monitored. Increasing OLR to 9g of chemical oxygen demand (COD) L(-1)d(-1) affected significantly the biogas yield and microbial diversity at 35°C.

View Article and Find Full Text PDF

In natural settings, anaerobic digestion can take place in a wide temperature range, but industrial digesters are usually operated under either mesophilic (~35 °C) or thermophilic (~55 °C) conditions. The ability of anaerobic digestion microbiota to switch from one operating temperature to the other remains poorly documented. We therefore studied the effect of sudden temperature changes (35 °C/55 °C) in lab-scale bioreactors degrading C-labelled cellulose.

View Article and Find Full Text PDF

Two parallel anaerobic digestion lines were designed to match a "bovid-like" digestive structure. Each of the lines consisted of two continuous stirred tank reactors placed in series and separated by an acidic treatment step. The first line was inoculated with industrial inocula whereas the second was seeded with cow digestive tract contents.

View Article and Find Full Text PDF

Anaerobic digestion is an alternative method for the treatment of animal manure and wastewater. The anaerobic bioconversion of biomass requires a multi-step biological process, including microorganisms with distinct roles. The diversity and composition of microbial structure in pilot-scale anaerobic digestion operating at ambient temperature in Brazil were studied.

View Article and Find Full Text PDF

This work evaluated the use of a culture enriched in DMRB as a strategy to enrich ARB on anodes. DMRB were enriched with Fe(III) as final electron acceptor and then transferred to a potentiostatically-controlled system with an anode as sole final electron acceptor. Three successive iron-enrichment cultures were carried out.

View Article and Find Full Text PDF

Invasion of non-native species can drastically affect the community composition and diversity of engineered and natural ecosystems, biofilms included. In this study, a molecular community fingerprinting method was used to monitor the putative establishment and colonization of allochthonous consortia in resident multi-species biofilms. To do this, biofilms inoculated with tap water or activated sludge were grown for 10 days in bubble column reactors W1 and W2, and S, respectively, before being exposed to non-native microbial consortia.

View Article and Find Full Text PDF

Two different saline sediments were used to inoculate potentiostatically controlled reactors (a type of microbial bioelectrochemical system, BES) operated in saline conditions (35 gNaCl l(-1)). Reactors were fed with acetate or a mixture of acetate and butyrate at two pH values: 7.0 or 5.

View Article and Find Full Text PDF

We propose using the surface of pine trees needles to biomonitor the bioaerosol emissions at a composting plant. Measurements were based on 16S rRNA gene copy numbers of Saccharopolyspora rectivirgula, a bioindicator of composting plant emissions. A sampling plan was established based on 29 samples around the emission source.

View Article and Find Full Text PDF

Although we spend the majority of our lives indoors, the airborne microbial content of enclosed spaces still remains inadequately described. The objective of this study was to characterize the bacterial diversity of indoor air in three different enclosed spaces with three levels of occupancy, and, in particular, to highlight the 'core' species, the opportunistic pathogens and their origins. Our findings provide an overall description of bacterial diversity in these indoor environments.

View Article and Find Full Text PDF

Many natural and engineered biofilm systems periodically face disturbances. Here we present how the recovery time of a biofilm between disturbances (expressed as disturbance frequency) shapes the development of morphology and community structure in a multi-species biofilm at the landscape scale. It was hypothesized that a high disturbance frequency favors the development of a stable adapted biofilm system while a low disturbance frequency promotes a dynamic biofilm response.

View Article and Find Full Text PDF

Biofiltration is an efficient biotechnological process used for waste gas abatement in various industrial processes. It offers low operating and capital costs and produces minimal secondary waste streams. The objective of this study was to evaluate the performance of a pilot scale biofilter in terms of pollutants' removal efficiencies and the bacterial dynamics under different inlet concentrations of H2S.

View Article and Find Full Text PDF

Microbial diversity is generally considered as having no effect on the major processes of the ecosystem such as respiration or nutrient assimilation. However, information about the impact of diversity on minor functions such as xenobiotic degradation is scant. We studied the role of diversity on the capacity of an activated-sludge microbial community to eliminate phenanthrene, a polycyclic aromatic hydrocarbon.

View Article and Find Full Text PDF

The performance of anaerobic digestion of abattoir wastewaters (AW) in an upflow anaerobic filter (UAF) was investigated under mesophilic (37°C) and thermophilic (55°C) conditions. The effects of increasing temperature on the performance of the UAF and on the dynamics of the microbial community of the anaerobic sludge were studied. The results showed that chemical oxygen demand (COD) removal efficiency of 90% was achieved for organic loading rates (OLRs) up to 4.

View Article and Find Full Text PDF