Publications by authors named "Jean-Frederic Gerbeau"

Novel studies conducting cardiac safety assessment using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are promising but might be limited by their specificity and predictivity. It is often challenging to correctly classify ion channel blockers or to sufficiently predict the risk for Torsade de Pointes (TdP). In this study, we developed a method combining in vitro and in silico experiments to improve machine learning approaches in delivering fast and reliable prediction of drug-induced ion-channel blockade and proarrhythmic behaviour.

View Article and Find Full Text PDF

Background: Spontaneous deep intracerebral hemorrhage (ICH) is a devastating subtype of stroke without specific treatments. It has been thought that smooth muscle cell (SMC) degeneration at the site of arteriolar wall rupture may be sufficient to cause hemorrhage. However, deep ICHs are rare in some aggressive small vessel diseases that are characterized by significant arteriolar SMC degeneration.

View Article and Find Full Text PDF

In order to reduce the complexity of heart hemodynamics simulations, uncoupling approaches are often considered for the modeling of the immersed valves as an alternative to complex fluid-structure interaction (FSI) models. A possible shortcoming of these simplified approaches is the difficulty to correctly capture the pressure dynamics during the isovolumetric phases. In this work, we propose an enhanced resistive immersed surfaces (RIS) model of cardiac valves, which overcomes this issue.

View Article and Find Full Text PDF

In numerous applications in biophysics, physiology and medicine, the system of interest is studied by monitoring quantities, called biomarkers, extracted from measurements. These biomarkers convey some information about relevant hidden quantities, which can be seen as parameters of an underlying model. In this paper we propose a strategy to automatically design biomarkers to estimate a given parameter.

View Article and Find Full Text PDF

The Micro-Electrode Array (MEA) device enables high-throughput electrophysiology measurements that are less labor-intensive than patch-clamp based techniques. Combined with human-induced pluripotent stem cells cardiomyocytes (hiPSC-CM), it represents a new and promising paradigm for automated and accurate drug safety evaluation. In this article, the following question is addressed: which features of the MEA signals should be measured to better classify the effects of drugs? A framework for the classification of drugs using MEA measurements is proposed.

View Article and Find Full Text PDF

We propose a mathematical approach for the analysis of drugs effects on the electrical activity of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) based on multi-electrode array (MEA) experiments. Our goal is to produce an in silico tool able to simulate drugs action in MEA/hiPSC-CM assays. The mathematical model takes into account the geometry of the MEA and the electrodes' properties.

View Article and Find Full Text PDF

Objective: Multi electrodes arrays (MEAs) combined with cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) can enable high- or medium-throughput drug screening in safety pharmacology. This technology has recently attracted a lot of attention, in particular from an international initiative named CiPA. But it is currently limited by the difficulty to analyze the measured signals.

View Article and Find Full Text PDF

The variability observed in action potential (AP) cardiomyocyte measurements is the consequence of many different sources of randomness. Often ignored, this variability may be studied to gain insight into the cell ionic properties. In this paper, we focus on the study of ionic channel conductances and describe a methodology to estimate their probability density function (PDF) from AP recordings.

View Article and Find Full Text PDF

Introduction: The Comprehensive in vitro Proarrhythmia Assay (CiPA) is a nonclinical Safety Pharmacology paradigm for discovering electrophysiological mechanisms that are likely to confer proarrhythmic liability to drug candidates intended for human use.

Topics Covered: Key talks delivered at the 'CiPA on my mind' session, held during the 2015 Annual Meeting of the Safety Pharmacology Society (SPS), are summarized. Issues and potential solutions relating to crucial constituents [e.

View Article and Find Full Text PDF

This work is dedicated to the simulation of full cycles of the electrical activity of the heart and the corresponding body surface potential. The model is based on a realistic torso and heart anatomy, including ventricles and atria. One of the specificities of our approach is to model the atria as a surface, which is the kind of data typically provided by medical imaging for thin volumes.

View Article and Find Full Text PDF

We consider the problem of estimating the stiffness of an artery wall using a data assimilation method applied to a 3D fluid-structure interaction (FSI) model. Recalling previous works, we briefly present the FSI model, the data assimilation procedure and the segmentation algorithm. We present then two examples of the procedure using real data.

View Article and Find Full Text PDF

3D computational fluid dynamics (CFD) in patient-specific geometries provides complementary insights to clinical imaging, to better understand how heart disease, and the side effects of treating heart disease, affect and are affected by hemodynamics. This information can be useful in treatment planning for designing artificial devices that are subject to stress and pressure from blood flow. Yet, these simulations remain relatively costly within a clinical context.

View Article and Find Full Text PDF

A procedure for modeling the heart valves is presented. Instead of modeling complete leaflet motion, leaflets are modeled in open and closed configurations. The geometry of each configuration can be defined, for example, from in vivo image data.

View Article and Find Full Text PDF

This paper addresses a complex multi-physical phenomenon involving cardiac electrophysiology and hemodynamics. The purpose is to model and simulate a phenomenon that has been observed in magnetic resonance imaging machines: in the presence of a strong magnetic field, the T-wave of the electrocardiogram (ECG) gets bigger, which may perturb ECG-gated imaging. This is due to a magnetohydrodynamic (MHD) effect occurring in the aorta.

View Article and Find Full Text PDF

We present a robust and computationally efficient parameter estimation strategy for fluid-structure interaction problems. The method is based on a filtering algorithm restricted to the parameter space, known as the reduced-order unscented Kalman filter. It does not require any adjoint or tangent problems.

View Article and Find Full Text PDF

Important progress has been achieved in recent years in simulating the fluid-structure interaction around cardiac valves. An important step in making these computational tools useful to clinical practice is the development of postprocessing techniques to extract clinically relevant information from these simulations. This work focuses on flow through the aortic valve and illustrates how the computation of Lagrangian coherent structures can be used to improve insight into the transport mechanics of the flow downstream of the valve, toward the goal of aiding clinical decision making and the understanding of pathophysiology.

View Article and Find Full Text PDF

This paper deals with the numerical simulation of electrocardiograms (ECG). Our aim is to devise a mathematical model, based on partial differential equations, which is able to provide realistic 12-lead ECGs. The main ingredients of this model are classical: the bidomain equations coupled to a phenomenological ionic model in the heart, and a generalized Laplace equation in the torso.

View Article and Find Full Text PDF

In this article, we aim at giving a non-technical overview of some mathematical models currently used in the numerical simulation of the cardiovascular system. A hierarchy of models for blood flows in large arteries is briefly described as well as an electromechanical model for the heart. We discuss some possible applications of the numerical simulations of such models, for example the optimization of prostheses.

View Article and Find Full Text PDF