Publications by authors named "Jean-Francois Prost"

AMHRII, the anti-Müllerian hormone receptor, is selectively expressed in normal sexual organs but is also re-expressed in gynecologic cancers. Hence, we developed murlentamab, a humanized glyco-engineered anti-AMHRII monoclonal antibody currently in clinical trial. Low-fucosylated antibodies are known to increase the antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) potency of effector cells, but some preliminary results suggest a more global murlentamab-dependent activation of the immune system.

View Article and Find Full Text PDF

The anti-Müllerian hormone (AMH) belongs to the TGF-β family and plays a key role during fetal sexual development. Various reports have described the expression of AMH type II receptor (AMHRII) in human gynecological cancers including ovarian tumors. According to qRT-PCR results confirmed by specific In-Situ Hybridization (ISH) experiments, AMHRII mRNA is expressed in an extremely restricted number of normal tissues.

View Article and Find Full Text PDF

Background: Angiotensin-converting enzyme 2 is the receptor that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses for entry into lung cells. Because ACE-2 may be modulated by angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs), there is concern that patients treated with ACEIs and ARBs are at higher risk of coronavirus disease 2019 (COVID-19) pneumonia.

Aim: This study sought to analyze the association of COVID-19 pneumonia with previous treatment with ACEIs and ARBs.

View Article and Find Full Text PDF

Background: Besides the interest of an early detection of ovarian cancer, there is an urgent need for new predictive and prognostic biomarkers of tumor development and cancer treatment. In healthy patients, circulating blood monocytes are typically subdivided into classical (85%), intermediate (5%) and non-classical (10%) populations. Although these circulating monocyte subsets have been suggested as biomarkers in several diseases, few studies have investigate their potential as a predictive signature for tumor immune status,tumor growth and treatment adaptation.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) has a worse prognosis compared with other breast cancer subtypes, and biomarkers to identify patients at high risk of recurrence are needed. Here, we investigated the expression of human epidermal receptor (HER) family members in TNBC and evaluated their potential as biomarkers of recurrence.

Methods: We developed Time Resolved-Förster Resonance Energy Transfer (TR-FRET) assays to quantify HER1, HER2 and HER3 in formalin-fixed paraffin-embedded (FFPE) tumour tissues.

View Article and Find Full Text PDF

Background: HER3/ErbB3 receptor deletion or blockade leads to tumor cell apoptosis, whereas its overexpression confers anti-cancer drug resistance through upregulation of protective mechanisms against apoptosis. We produced the anti-HER3 antibody 9F7-F11 that promotes HER3 ubiquitination and degradation via JNK1/2-dependent activation of the E3 ubiquitin ligase ITCH, and that induces apoptosis of cancer cells. Cellular FLICE-like inhibitory protein (c-FLIP) is a key regulator of apoptotic pathways.

View Article and Find Full Text PDF

Müllerian inhibiting substance, also called anti-Müllerian hormone (AMH), inhibits proliferation and induces apoptosis of AMH type II receptor-positive tumor cells, such as human ovarian cancers (OCs). On this basis, a humanized glyco-engineered monoclonal antibody (3C23K) has been developed. The aim of this study was therefore to experimentally confirm the therapeutic potential of 3C23K in human OCs.

View Article and Find Full Text PDF

Exploratory clinical trials using therapeutic anti-HER3 antibodies strongly suggest that neuregulin (NRG1; HER3 ligand) expression at tumor sites is a predictive biomarker of anti-HER3 antibody efficacy in cancer. We hypothesized that in NRG1-expressing tumors, where the ligand is present before antibody treatment, anti-HER3 antibodies that do not compete with NRG1 for receptor binding have a higher receptor-neutralizing action than antibodies competing with the ligand for binding to HER3. Using time-resolved-fluorescence energy transfer (TR-FRET), we demonstrated that in the presence of recombinant NRG1, binding of 9F7-F11 (a nonligand-competing anti-HER3 antibody) to HER3 is increased, whereas that of ligand-competing anti-HER3 antibodies (H4B-121, U3-1287, Ab#6, Mab205.

View Article and Find Full Text PDF

Ovarian cancer is the leading cause of death in women with gynecological cancers and despite recent advances, new and more efficient therapies are crucially needed. Müllerian Inhibiting Substance type II Receptor (MISRII, also named AMHRII) is expressed in most ovarian cancer subtypes and is a novel potential target for ovarian cancer immunotherapy. We previously developed and tested 12G4, the first murine monoclonal antibody (MAb) against human MISRII.

View Article and Find Full Text PDF

The Laboratoire français du fractionnement et des biotechnologies (LFB), the leading manufacturer of plasma-derived medicinal products in France and 6th worldwide, is strongly involved in the development of therapeutic monoclonal antibodies (mAb). For more than 15 years, LFB has been focusing its research effort on the study of structure-function relationship of antibodies. Its studies on the molecular basis of IgG interaction with the receptors for the Fc portion of IgG (FcgRs) has made it possible to develop antibodies with high antibody-dependent cellular cytotoxicity (ADCC) activity and enhanced affinity to FcgRIII (CD16), both correlated to a glycosylation pattern characterized by a low fucose content.

View Article and Find Full Text PDF

Background: Chikungunya virus (CHIKV) is a recently reemerged arbovirus responsible for a massive outbreak of infection in the Indian Ocean region and India that has a very significant potential to spread globally because of the worldwide distribution of its mosquito vectors. CHIKV induces a usually self-limited disease in humans that is characterized by fever, arthralgia, myalgia, and rash; however, cases of severe CHIKV infection have recently been described, particularly in adults with underlying condition and neonates born to viremic mothers.

Methods: Human polyvalent immunoglobulins were purified from plasma samples obtained from donors in the convalescent phase of CHIKV infection, and the preventive and curative effects of these immunoglobulins were investigated in 2 mouse models of CHIKV infection that we developed.

View Article and Find Full Text PDF

Patients with chronic lymphocytic leukaemia (CLL) treated with a combination of fludarabine, cyclophosphamide and rituximab show a high response rate. However, only a poor response is observed following rituximab monotherapy. The use of chemo-immunotherapy is often associated with haematological and infectious complications.

View Article and Find Full Text PDF

A human anti-RhD immunoglobulin G1 monoclonal antibody (mAb), R297, was tested in a phase I study to assess its ability to induce the clearance of antibody-coated autologous RhD+ red blood cells (RBCs) in healthy male volunteers. The clearance potency of R297 was compared with that of a marketed human polyclonal anti-D product (Rhophylac). This mAb has been selected for its ability to strongly engage Fc-gamma receptor IIIA and to mediate a potent antibody-dependent cell cytotoxicity (ADCC) against RhD+ RBCs.

View Article and Find Full Text PDF

Protein tyrosine phosphatases from several microorganisms have been shown to play a role as virulence factors by modifying the phosphorylation/dephosphorylation equilibrium in cells of their host. Two tyrosine phosphatases, MptpA and MptpB, secreted by Mycobacterium tuberculosis, have been identified. Expression of MptpA is upregulated upon infection of monocytes, but its role in host cells has not been elucidated.

View Article and Find Full Text PDF

Bacterial genomics have revealed the widespread occurrence of eukaryotic-like protein kinases in prokaryotes, but little is known about their regulation, endogenous substrates, and physiological role. The present study concerns one of these enzymes, the serine/threonine protein kinase PknF from Mycobacterium tuberculosis. It is shown that, in addition to its autokinase activity, PknF is able to phosphorylate Rv1747, a newly described ABC transporter.

View Article and Find Full Text PDF

In bacteria, regulatory phosphorylation of proteins at serine and/or threonine residues by Ser/Thr protein kinase (STPK) is an emerging theme in prokaryotic signaling, particularly since the prediction of the occurrence of several STPKs from genome sequencing and sequence surveys. Here we show that protein PknH possesses an autokinase activity and belongs to the large STPK family found in Mycobacterium tuberculosis. Evidence is presented that PknH can also phosphorylate EmbR, a protein suspected to modulate the level of arabinosyltransferase activity involved in arabinan biosynthesis of arabinogalactan, a key molecule of the mycobacterial cell wall.

View Article and Find Full Text PDF

The recA gene of Mycobacterium tuberculosis is unusual in that it is expressed from two promoters, one of which, P1, is DNA damage inducible independently of LexA and RecA, while the other, P2, is regulated by LexA in the classical way (E. O. Davis, B.

View Article and Find Full Text PDF

Protein PknE from Mycobacterium tuberculosis has been overproduced and purified, and its biochemical properties have been analyzed. This protein is shown to be a eukaryotic-like (Hanks'-type) protein kinase with a structural organization similar to that of membrane-bound eukaryotic sensor serine/threonine kinases. It consists of a N-terminal catalytic domain located in the cytoplasm, linked via a single transmembrane-spanning region to an extracellular C-terminal domain.

View Article and Find Full Text PDF