Viruses are the most abundant biological entities on Earth and have fundamental ecological roles in controlling microbial communities. Yet, although their diversity is being increasingly explored, little is known about the extent of viral interactions with their protist hosts as most studies are limited to a few cultivated species. Here, we exploit the potential of single-cell genomics to unveil viral associations in 65 individual cells of 11 essentially uncultured stramenopiles lineages sampled during the Tara Oceans expedition.
View Article and Find Full Text PDFProtists have fundamental ecological roles in marine environments and their diversity is being increasingly explored, yet little is known about the quantitative importance of specific taxa in these ecosystems. Here we optimized a newly developed automated system of image acquisition and image analysis to enumerate minute uncultured cells of different sizes targeted by fluorescence in situ hybridization. The automated counting routine was highly reproducible, well correlated with manual counts, and was then applied on surface and deep chlorophyll maximum samples from the Malaspina 2010 circumnavigation.
View Article and Find Full Text PDFSingle-celled eukaryotes (protists) are critical players in global biogeochemical cycling of nutrients and energy in the oceans. While their roles as primary producers and grazers are well appreciated, other aspects of their life histories remain obscure due to challenges in culturing and sequencing their natural diversity. Here, we exploit single-cell genomics and metagenomics data from the circumglobal Tara Oceans expedition to analyze the genome content and apparent oceanic distribution of seven prevalent lineages of uncultured heterotrophic stramenopiles.
View Article and Find Full Text PDF"X-cells" have long been associated with tumor-like formations (xenomas) in marine fish, including many of commercial interest. The name was first used to refer to the large polygonal cells that were found in epidermal xenomas from flatfish from the Pacific Northwest [1]. Similar looking cells from pseudobranchial xenomas had previously been reported from cod in the Atlantic [2] and Pacific Oceans [3].
View Article and Find Full Text PDFPlanktonic heterotrophic prokaryotes make up the largest living biomass and process most organic matter in the ocean. Determining when and where the biomass and activity of heterotrophic prokaryotes are controlled by resource availability (bottom-up), predation and viral lysis (top-down) or temperature will help in future carbon cycling predictions. We conducted an extensive survey across subtropical and tropical waters of the Atlantic, Indian and Pacific Oceans during the Malaspina 2010 Global Circumnavigation Expedition and assessed indices for these three types of controls at 109 stations (mostly from the surface to 4,000 m depth).
View Article and Find Full Text PDFPico-sized eukaryotes play key roles in the functioning of marine ecosystems, but we still have a limited knowledge on their ecology and evolution. The MAST-4 lineage is of particular interest, since it is widespread in surface oceans, presents ecotypic differentiation and has defied culturing efforts so far. Single cell genomics (SCG) are promising tools to retrieve genomic information from these uncultured organisms.
View Article and Find Full Text PDFMost microbial richness at any given time tends to be represented by low-abundance (rare) taxa, which are collectively referred to as the "rare biosphere". Here we review works on the rare biosphere using high-throughput sequencing (HTS), with a particular focus on unicellular eukaryotes or protists. Evidence thus far indicates that the rare biosphere encompasses dormant as well as metabolically active microbes that could potentially play key roles in ecosystem functioning.
View Article and Find Full Text PDFRecent advances in next-generation sequencing (NGS) technologies spur progress in determining the microbial diversity in various ecosystems by highlighting, for example, the rare biosphere. Currently, high-throughput pyrotag sequencing of PCR-amplified SSU rRNA gene regions is mainly used to characterize bacterial and archaeal communities, and rarely to characterize protist communities. In addition, although taxonomic assessment through phylogeny is considered as the most robust approach, similarity and probabilistic approaches remain the most commonly used for taxonomic affiliation.
View Article and Find Full Text PDFUnderstanding the spatial distribution of aquatic microbial diversity and the underlying mechanisms causing differences in community composition is a challenging and central goal for ecologists. Recent insights into protistan diversity and ecology are increasing the debate over their spatial distribution. In this study, we investigate the importance of spatial and environmental factors in shaping the small protists community structure in lakes.
View Article and Find Full Text PDFThe short-term variation in the community structure of freshwater small eukaryotes (0.2-5 μm) was investigated in a mesotrophic lake every 2-3 days over one summer by coupling three molecular methods: 454 amplicon pyrosequencing, qPCR and TSA-FISH. The pyrosequencing approach unveiled a much more extensive small-eukaryotic diversity (991 OTUs) than has been described previously.
View Article and Find Full Text PDFThe diversity of attached and free-living Actinobacteria and Betaproteobacteria, based on 16S rRNA gene sequences, was investigated in a mesotrophic lake during two periods of contrasting phytoplankton dominance. Comparison analyses showed a phylogenetic difference between attached and free-living communities for the two bacterial groups. For Betaproteobacteria, the betaI clade was detected at all sampling dates in free-living and attached bacterial communities and was the dominant clade contributing to 57.
View Article and Find Full Text PDFIn lakes, the diversity of eukaryotic picoplankton has been recently studied by the analysis of 18S ribosomal RNA gene sequences; however, quantitative data are rare. In this study, the vertical structure and abundance of the small eukaryotic size fraction (0.2-5 μm) were investigated in three lakes by tyramide signal amplification-fluorescent in situ hybridization targeting six phylogenetic groups: Chlorophyta, Haptophyta, Cercozoa, LKM11, Perkinsozoa and fungi.
View Article and Find Full Text PDFThe seasonal dynamics of the small eukaryotic fraction (cell diameter, 0.2 to 5 microm) was investigated in a mesotrophic lake by tyramide signal amplification-fluorescence in situ hybridization targeting seven different phylogenetic groups: Chlorophyceae, Chrysophyceae, Cryptophyceae, Cercozoa, LKM11, Perkinsozoa (two clades), and Fungi. The abundance of small eukaryotes ranged from 1,692 to 10,782 cells ml(-1).
View Article and Find Full Text PDFDissipation kinetics of mesotrione, a new triketone herbicide, sprayed on soil from Limagne (Puy-de-Dôme, France) showed that the soil microflora were able to biotransform it. Bacteria from this soil were cultured in mineral salt solution supplemented with mesotrione as sole source of carbon for the isolation of mesotrione-degrading bacteria. The bacterial community structure of the enrichment cultures was analyzed by temporal temperature gradient gel electrophoresis (TTGE).
View Article and Find Full Text PDF