We demonstrate nonlinear temporal compression of a vortex beam by propagation in a gas-filled capillary. Starting from an ytterbium-based laser delivering 700 μJ 640 fs pulses at a 100 kHz repetition rate, the vortex beam is generated using a spiral phase plate and coupled to a capillary where it excites a set of four modes that have an overlap integral of 97% with a Laguerre-Gauss LG mode. Nonlinear propagation of this hybrid, orbital angular momentum (OAM)-carrying mode results in temporal compression down to 74 fs at the output.
View Article and Find Full Text PDFThis Letter describes an experimental realization of a double-pass amplifier using rod-type fiber. In this device, the gain reaches 26 dB amplifying a 300 mW, 20 ps, 20 MHz seed up to 120 W, with an optical-to-optical efficiency of 50% and excellent beam quality. In addition, by design the output of the amplifier has a polarization extinction ratio of 33 dB.
View Article and Find Full Text PDFBy pumping thulium-doped silica-based fibers at 1.07 μm, rapid generation of absorbing centers leads to photoinduced attenuation (PIA). This detrimental effect prevents exploiting laser emissions in the visible and near infrared.
View Article and Find Full Text PDF