Publications by authors named "Jean-Francois Leterrier"

The phosphorylation of neurofilaments (NFs) has long been considered to regulate their axonal transport rate and in doing so to provide stability to mature axons. Axons contain a centrally situated ;bundle' of closely opposed phospho-NFs that display a high degree of NF-NF associations and phospho-epitopes, surrounded by less phosphorylated ;individual' NFs that are often associated with kinesin and microtubules (MTs). Bundled NFs transport substantially slower than the surrounding individual NFs and might represent a resident population that stabilizes axons and undergoes replacement by individual NFs.

View Article and Find Full Text PDF

One cellular function of intermediate filaments is to provide cells with compliance to small deformations while strengthening them when large stresses are applied. How IFs accomplish this mechanical role is revealed by recent studies of the elastic properties of single IF protein polymers and by viscoelastic characterization of the networks they form. IFs are unique among cytoskeletal filaments in withstanding large deformations.

View Article and Find Full Text PDF

Neurofilaments are synthesized in the cell body of neurons and transported outward along the axon via slow axonal transport. Direct observation of neurofilaments trafficking in live cells suggests that the slow outward rate of transport is due to the net effects of anterograde and retrograde microtubule motors pulling in opposition. Previous studies have suggested that cytoplasmic dynein is required for efficient neurofilament transport.

View Article and Find Full Text PDF

Vasoactive intestinal peptide (VIP) and the related peptides pituitary adenylate cyclase-activating polypeptide (PACAP) and peptide histidine methionine (PHM) are known to regulate proliferation and/or differentiation in normal and tumoral cells. In this study, neuritogenesis in human neuroblastoma SH-SY5Y cells cultured in serum-free medium was induced by VIP, PACAP, and PHM. The establishment of this process was followed by the quantification of neurite length and branching and the expression of neurofilament mRNAs, neurofilament proteins, and other cytoskeletal protein markers of neuronal differentiation: neuron-specific MAPs and beta-tubulin III.

View Article and Find Full Text PDF

Lateral projections of neurofilaments (NF) called sidearms (SA) affect axon stability and caliber. SA phosphorylation is thought to modulate inter-NF distance and interactions between NF and other subcellular organelles. SA were probed by atomic force microscopy (AFM) and dynamic light scattering (DLS) as a function of phosphorylation and ATP content.

View Article and Find Full Text PDF