Understanding how cool stars produce magnetic fields within their interiors is crucial for predicting the impact of such fields, such as the activity cycle of the Sun. In this respect, studying fully convective stars enables us to investigate the role of convective zones in magnetic field generation. We produced a magnetic map of a rapidly rotating, very-low-mass, fully convective dwarf through tomographic imaging from time series of spectropolarimetric data.
View Article and Find Full Text PDFModels predict that magnetic fields play a crucial role in the physics of astrophysical accretion disks and their associated winds and jets. For example, the rotation of the disk twists around the rotation axis the initially vertical magnetic field, which responds by slowing down the plasma in the disk and by causing it to fall towards the central star. The magnetic energy flux produced in this process points away from the disk, pushing the surface plasma outwards, leading to a wind from the disk and sometimes a collimated jet.
View Article and Find Full Text PDF