Histone reader domains provide a mechanism for sensing states of coordinated nuclear processes marked by histone proteins' post-translational modifications (PTMs). Among a growing number of discovered histone readers, the 14-3-3s, ankyrin repeat domains (ARDs), tetratricopeptide repeats (TPRs), bromodomains (BRDs), and HEAT domains are a group of domains using various mechanisms to recognize unmodified or modified histones, yet they all are composed of an α-helical fold. In this review, we compare how these readers fold to create protein domains that are very diverse in their tertiary structures, giving rise to intriguing peptide binding mechanisms resulting in vastly different footprints of their targets.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) form the foundation of any cell signaling network. Considering that PPIs are highly dynamic processes, cellular assays are often essential for their study because they closely mimic the biological complexities of cellular environments. However, incongruity may be observed across different PPI assays when investigating a protein partner of interest; these discrepancies can be partially attributed to the fusion of different large functional moieties, such as fluorescent proteins or enzymes, which can yield disparate perturbations to the protein's stability, subcellular localization, and interaction partners depending on the given cellular assay.
View Article and Find Full Text PDFThe ATP-binding cassette (ABC) sterol transporters are responsible for maintaining cholesterol homeostasis in mammals by participating in reverse cholesterol transport (RCT) or transintestinal cholesterol efflux (TICE). The heterodimeric ABCG5/G8 carries out selective sterol excretion, preventing the abnormal accumulation of plant sterols in human bodies, while homodimeric ABCG1 contributes to the biogenesis and metabolism of high-density lipoproteins. A sterol-binding site on ABCG5/G8 was proposed at the interface of the transmembrane domain and the core of lipid bilayers.
View Article and Find Full Text PDFThe tail of replication-dependent histone H3.1 varies from that of replication-independent H3.3 at the amino acid located at position 31 in plants and animals, but no function has been assigned to this residue to demonstrate a unique and conserved role for H3.
View Article and Find Full Text PDFCrohn's disease (CD) is characterized by the chronic inflammation of the gastrointestinal tract. A dysbiotic microbiome and a defective immune system are linked to CD, where hydrogen sulfide (H S) microbial producers positively correlate with the severity of the disease. Atopobium parvulum is a key H S producer from the microbiome of CD patients.
View Article and Find Full Text PDFCXXC Zinc finger protein 1 (CFP1) is a multitasking protein playing essential roles during various developmental processes. Its ability to interact with several proteins contribute to several epigenetic events. Here, we review CFP1's functions and its impact on DNA methylation and the post-translational modification of histone proteins such as lysine acetylation and methylation.
View Article and Find Full Text PDFPost-translational modifications (PTMs) of histone proteins play essential functions in shaping chromatin environment. Alone or in combination, these PTMs create templates recognized by dedicated proteins or change the chemistry of chromatin, enabling a myriad of nuclear processes to occur. Referred to as cross-talk, the positive or negative impact of a PTM on another PTM has rapidly emerged as a mechanism controlling nuclear transactions.
View Article and Find Full Text PDFLysine acetylation (Kac), an abundant post-translational modification (PTM) in prokaryotes, regulates various microbial metabolic pathways. However, no studies have examined protein Kac at the microbiome level, and it remains unknown whether Kac level is altered in patient microbiomes. Herein, we use a peptide immuno-affinity enrichment strategy coupled with mass spectrometry to characterize protein Kac in the microbiome, which successfully identifies 35,200 Kac peptides from microbial or human proteins in gut microbiome samples.
View Article and Find Full Text PDFRibonuclease 6 (RNase 6) is one of eight catalytically active human pancreatic-type RNases that belong to a superfamily of rapidly evolving enzymes. Like some of its human homologues, RNase 6 exhibits host defense properties such as antiviral and antibacterial activities. Recently solved crystal structures of this enzyme in its nucleotide-free form show the conservation of the prototypical kidney-shaped fold preserved among vertebrate RNases, in addition to revealing the presence of a unique secondary active site.
View Article and Find Full Text PDFCOMPlex ASsociating with SET1 (COMPASS) is a histone H3 Lys-4 methyltransferase that typically marks the promoter region of actively transcribed genes. COMPASS is a multi-subunit complex in which the catalytic unit, SET1, is required for H3K4 methylation. An important subunit known to regulate SET1 methyltransferase activity is the CxxC zinc finger protein 1 (Cfp1).
View Article and Find Full Text PDFThe effect of accounting for the total surface in the association of thiol-containing molecules to nanosilver was assessed using isothermal titration calorimetry, along with a new open access algorithm that calculates the total surface area for samples of different polydispersity. Further, we used advanced molecular dynamic calculations to explore the underlying mechanisms for the interaction of the studied molecules in the presence of a nanosilver surface in the form of flat surfaces or as three-dimensional pseudospherical nanostructures. Our data indicate that not only is the total surface area available for binding but also the supramolecular arrangements of the molecules in the near proximity of the nanosilver surface strongly affects the affinity of thiol-containing molecules to nanosilver surfaces.
View Article and Find Full Text PDFThe proliferating cell nuclear antigen (PCNA) is a sliding clamp associated with DNA polymerases and serves as a binding platform for the recruitment of regulatory proteins linked to DNA damage repair, cell cycle regulation, and epigenetic signaling. The histone H3 lysine-27 (H3K27) mono-methyltransferase Arabidopsis trithorax-related protein 5/6 (ATXR5/6) associates with PCNA, and this interaction has been proposed to act as a key determinant controlling the reestablishment of H3K27 mono-methylation following replication. In this study, we provide biochemical evidence showing that PCNA inhibits ATXR6 enzymatic activity.
View Article and Find Full Text PDFThe ferric uptake regulator (Fur) is a superfamily of transcription factors found in bacteria which control the expression of a myriad of genes. In this study, we report a simple protocol for the purification of recombinant untagged Campylobacter jejuni Fur (CjFur). CjFur was isolated using a combination of three ion exchange chromatography steps followed by size exclusion chromatography on a Superdex 75.
View Article and Find Full Text PDFDpy-30 is a regulatory subunit controlling the histone methyltransferase activity of the KMT2 enzymes in vivo. Paradoxically, in vitro methyltransferase assays revealed that Dpy-30 only modestly participates in the positive heterotypic allosteric regulation of these methyltransferases. Detailed genome-wide, molecular and structural studies reveal that an extensive network of interactions taking place at the interface between Dpy-30 and Ash2L are critical for the correct placement, genome-wide, of H3K4me2 and H3K4me3 but marginally contribute to the methyltransferase activity of KMT2 enzymes in vitro.
View Article and Find Full Text PDFAromatic d-amino acids are key precursors for the production of many small molecule therapeutics. Therefore, the development of biocatalytic methods for their synthesis is of great interest. An enzyme that has great potential as a biocatalyst for the synthesis of d-amino acids is the stereoinverting d-phenylglycine aminotransferase (DPAT) from Pseudomonas stutzeri ST-201.
View Article and Find Full Text PDFThe methylation of histone 3 lysine 4 (H3K4) is carried out by an evolutionarily conserved family of methyltransferases referred to as complex of proteins associated with Set1 (COMPASS). The activity of the catalytic SET domain (su(var)3-9, enhancer-of-zeste, and trithorax) is endowed through forming a complex with a set of core proteins that are widely shared from yeast to humans. We obtained cryo-electron microscopy (cryo-EM) maps of the yeast Set1/COMPASS core complex at overall 4.
View Article and Find Full Text PDFMutations in proteins like FUS which cause Amyotrophic Lateral Sclerosis (ALS) result in the aberrant formation of stress granules while ALS-linked mutations in other proteins impede elimination of stress granules. Repeat expansions in C9ORF72, the major cause of ALS, reduce C9ORF72 levels but how this impacts stress granules is uncertain. Here, we demonstrate that C9ORF72 associates with the autophagy receptor p62 and controls elimination of stress granules by autophagy.
View Article and Find Full Text PDFIn every living organism, the control of metal homoeostasis is a tightly regulated process coordinated by several intertwined biological pathways. In many bacteria, the ferric uptake regulator (Fur) family of transcriptional factors (TFs) are key factors in controlling the expression of genes involved in metal homeostasis and can also regulate the expression of genes involved in responses to oxidative stresses. Since the crystallization of Escherichia coli Fur DNA binding domain, the crystal structure of several metalloregulators have been reported.
View Article and Find Full Text PDFIn Campylobacter jejuni (Cj), the metal-cofactored peroxide response regulator (PerR) transcription factor allows C. jejuni to respond to oxidative stresses. The crystal structure of the metalated form of CjPerR shows that the protein folds as an asymmetric dimer displaying structural differences in the orientation of its DNA-binding domain.
View Article and Find Full Text PDFFerric uptake regulators (Fur) are a family of transcription factors coupling gene regulatory events to metal concentration. Recent evidence has expanded the mechanistic repertoires employed by Fur to activate or repress gene expression in the presence or absence of regulatory metals. However, the mechanistic basis underlying this extended repertoire has remained largely unexplored.
View Article and Find Full Text PDFWe investigated two critical aspects of rose Bengal (RB) photosensitized protein cross-linking that may underlie recently developed medical applications. Our studies focused on the binding of RB to collagen by physical interaction and the effect of this binding and certain amino acids on RB photochemistry. Molecular dynamics simulations and free-energy calculation techniques, complemented with isothermal titration calorimetry, provided insight into the binding between RB and a collagen-like peptide (CLP) at the atomic level.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
November 2017
An α-helix bundle is a small and compact protein fold always composed of more than 2 α-helices that typically run nearly parallel or antiparallel to each other. The repertoire of arrangements of α-helix bundle is such that these domains bind to a myriad of molecular entities including DNA, RNA, proteins and small molecules. A special instance of α-helical bundle is the X-type in which the arrangement of two α-helices interact at 45° to form an X.
View Article and Find Full Text PDFIn plants, the histone H3.1 lysine 27 (H3K27) mono-methyltransferases ARABIDOPSIS TRITHORAX RELATED PROTEIN 5 and 6 (ATXR5/6) regulate heterochromatic DNA replication and genome stability. Our initial studies showed that ATXR5/6 discriminate between histone H3 variants and preferentially methylate K27 on H3.
View Article and Find Full Text PDF