Graphene and hexagonal boron nitride (hBN) are two-dimensional (2D) materials with a similar atomic structure but drastically different although complementary electronic properties. The large-scale synthesis of h-BN/graphene heterostructures with high crystallographic quality is required to fully benefit of the graphene electronic properties. In this study, we examine numerically the interaction of graphene precursors on hBN and of hBN precursors on graphene to gain deep insight of the CVD and MBE growth mechanism of graphene/hBN heterostructures.
View Article and Find Full Text PDFThis study investigates the simultaneous decoration of vertically aligned molybdenum disulfide nanostructure (VA-MoS) with Ag nanoparticles (NPs) and nitrogen functionalization. Nitrogen functionalization was achieved through physical vapor deposition (PVD) DC-magnetron sputtering using nitrogen as a reactive gas, aiming to induce p-type behavior in MoS. The utilization of reactive sputtering resulted in the growth of three-dimensional silver structures on the surface of MoS, promoting the formation of silver nanoparticles.
View Article and Find Full Text PDFHerein, we present, for the first time, a chemoresistive-type gas sensor composed of two-dimensional WSe, fabricated by a simple selenization of tungsten trioxide (WO) nanowires at atmospheric pressure. The morphological, structural, and chemical composition investigation shows the growth of vertically oriented three-dimensional (3D) assemblies of edge-enriched WSe nanoplatelets arrayed in a nanoflower shape. The gas sensing properties of flowered nanoplatelets (2H-WSe) are investigated thoroughly toward specific gases (NH and NO) at different operating temperatures.
View Article and Find Full Text PDFLaminated metal dichalcogenides are candidates for different potential applications ranging from catalysis to nanoelectronics. However, efforts are still needed to optimize synthesis methods aiming to control the number of layers, morphology, and crystallinity, parameters that govern the properties of the synthesized materials. Another important parameter is the thickness and the length of the samples with the possibility of large-scale growth of target homogeneous materials.
View Article and Find Full Text PDFZinc Oxide nanoparticles have been synthesized by two simple routes using Aloe vera (green synthesis, route I) or Cassava starch (gelatinization, route II). The XRD patterns and Raman spectra show that both synthesis routes lead to single-phase ZnO. XPS results indicate the presence of zinc atoms with oxidation state Zn.
View Article and Find Full Text PDFZnO is known to be photocatalytic, but with limited performances due to the strong electron-hole recombination after irradiation. The integration of ZnO nanomaterials on a conductive and high surface area carbon substrate is thus a potential alternative to obtain a significant improvement of the photocatalytic performance. Moreover, the carbon functionalization is expected to have a significant role in the adsorption/degradation mechanisms of dye, due to the difference in wettability or surface charge.
View Article and Find Full Text PDFSilicon nanowire (SiNW) arrays were coated with chromium nitride (CrN) for use as supercapacitor electrodes. The CrN layer of different thicknesses was deposited onto SiNWs using bipolar magnetron sputtering method. The areal capacitance of the SiNWs-CrN, as measured in 0.
View Article and Find Full Text PDFThe growth of single-layer graphene (SLG) by chemical vapor deposition (CVD) on copper surfaces is very popular because of the self-limiting effect that, in principle, prevents the growth of few-layer graphene (FLG). However, the reproducibility of the CVD growth of homogeneous SLG remains a major challenge, especially if one wants to avoid heavy surface treatments, monocrystalline substrates and expensive equipment to control the atmosphere inside the growth system. We demonstrate here that backside tungsten coating of copper foils allows for the exclusive growth of SLG with full coverage by atmospheric pressure CVD implemented in a vacuum-free furnace.
View Article and Find Full Text PDFDensely populated edge-terminated vertically aligned two-dimensional MoS nanosheets (NSs) with thicknesses ranging from 5 to 20 nm were directly synthesized on Mo films deposited on SiO by sulfurization. The quality of the obtained NSs was analyzed by scanning electron and transmission electron microscopy, and Raman and X-ray photoelectron spectroscopy. The as-grown NSs were then successfully transferred to the substrates using a wet chemical etching method.
View Article and Find Full Text PDFThe surface chemistry of plasma fluorinated vertically aligned carbon nanotubes (vCNT) is correlated to the CF plasma chemical composition. The results obtained via FTIR and mass spectrometry are combined with the XPS and Raman analysis of the sample surface showing the dependence on different plasma parameters (power, time and distance from the plasma region) on the resulting fluorination. Photoemission and absorption spectroscopies are used to investigate the evolution of the electronic properties as a function of the fluorine content at the vCNT surface.
View Article and Find Full Text PDFWe investigated the interaction between size-selected Au and Au clusters and graphene. Hereto preformed clusters are deposited on graphene field-effect transistors, a novel approach which offers a high control over the number of atoms per cluster, the deposition energy and the deposited density. The induced p-doping and charge carrier scattering indicate that a major part of the deposited clusters remains on the graphene flake as either individual or sub-nm coalesced entities.
View Article and Find Full Text PDFWe propose an innovative, easy-to-implement approach to synthesize aligned large-area single-crystalline graphene flakes by chemical vapor deposition on copper foil. This method doubly takes advantage of residual oxygen present in the gas phase. First, by slightly oxidizing the copper surface, we induce grain boundary pinning in copper and, in consequence, the freezing of the thermal recrystallization process.
View Article and Find Full Text PDFThe structural colour of male Hoplia coerulea beetles is notable for changing from blue to green upon contact with water. In fact, reversible changes in both colour and fluorescence are induced in this beetle by various liquids, although the mechanism has never been fully explained. Changes enacted by water are much faster than those by ethanol, in spite of ethanol's more rapid spread across the elytral surface.
View Article and Find Full Text PDFGrafting of fluorine species on carbon nanostructures has attracted interest due to the effective modification of physical and chemical properties of the starting materials. Various techniques have been employed to achieve a controlled fluorination yield; however, the effect of contaminants is rarely discussed, although they are often present. In the present work, the fluorination of vertically aligned multiwalled carbon nanotubes was performed using plasma treatment in a magnetron sputtering chamber with fluorine diluted in an argon atmosphere with an Ar/F2 ratio of 95:5.
View Article and Find Full Text PDFNonlinear second harmonic optical activity of graphene covering a gold photon sieve was determined for different polarizations. The photon sieve consists of a subwavelength gold nanohole array placed on glass. It combines the benefits of efficient light trapping and surface plasmon propagation to unravel different elements of graphene second-order susceptibility χ((2)).
View Article and Find Full Text PDFBased on micro-Raman spectroscopy (μRS) and X-ray photoelectron spectroscopy (XPS), we study the structural damage incurred in monolayer (1L) and few-layer (FL) graphene subjected to atomic-layer deposition of HfO2 and Al2O3 upon different oxygen plasma power levels. We evaluate the damage level and the influence of the HfO2 thickness on graphene. The results indicate that in the case of Al2O3/graphene, whether 1L or FL graphene is strongly damaged under our process conditions.
View Article and Find Full Text PDFVertically aligned carbon nanotubes of different lengths (150, 300, 500 µm) synthesized by thermal chemical vapor deposition and decorated with gold nanoparticles were investigated as gas sensitive materials for detecting nitrogen dioxide (NO2) at room temperature. Gold nanoparticles of about 6 nm in diameter were sputtered on the top surface of the carbon nanotube forests to enhance the sensitivity to the pollutant gas. We showed that the sensing response to nitrogen dioxide depends on the nanotube length.
View Article and Find Full Text PDFThe calculation of the reflectance of photonic crystals having form-birefringent anisotropic elements in the crystal unit cell, such as cylinders, often turns out to be problematic, especially when the reflectance spectrum has to be computed according to different crystal orientations as in polycrystals for instance. The method we propose here solves this problem in the specific case of photonic crystals whose periodicities are such that there are no diffraction orders except Bragg reflection in the visible range. For a given crystal orientation, the crystal is sliced into layers and the periodic spatial variations of the dielectric function ε are homogenized.
View Article and Find Full Text PDFThe large male tarantula Pamphobeteus antinous is easily recognized at the presence of blue-violet iridescent bristles on some of the segments of its legs and pedipalps. The optical properties of these colored appendages have been measured and the internal geometrical structure of the bristles have been investigated. The coloration is shown to be caused by a curved coaxial multilayer which acts as a "cylindrical Bragg mirror".
View Article and Find Full Text PDFThis review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs). The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length.
View Article and Find Full Text PDFRhomboidal and spherical metallic-copper nanostructures were encapsulated within well-formed graphitic shells by using a simple chemical method that involved the catalytic decomposition of acetylene over a copper catalyst that was supported on different smectite clays surfaces by ion-exchange. These metallic-copper nanostructures could be separated from the inorganic support and remained stable for months. The choice of the clay support influenced both the shape and the size of the synthesized Cu nanostructures.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2012
Three-dimensional photonic-crystal grains were found in the scales of the longhorn beetle Prosopocera lactator (Cerambycidae). The local geometric structure can be described as a face-centered-cubic array of spheres, connected by short rods, reminiscent of the "ball-and-stick" models used by solid-state chemists to visualize atomic structures. Based on scanning electron microscopy, x-ray nanotomography, optical measurements, photonic band-structure calculations, and computer simulations of the reflectance, the desaturated greenish coloration is shown to arise from the observed photonic polycrystalline structure.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2010
The butterfly Pierella luna (Nymphalidae) shows an intriguing rainbow iridescence effect: the forewings of the male, when illuminated along the axis from the body to the wing tip, decompose a white light beam as a diffraction grating would do. Violet light, however, emerges along a grazing angle, near the wing surface, while the other colors, from blue to red, exit respectively at angles progressively closer to the direction perpendicular to the wing plane. This sequence is the reverse of the usual decomposition of light by a grating with a periodicity parallel to the wing surface.
View Article and Find Full Text PDFA highly ordered two-dimensional hybrid magnetic nanocomposite has been prepared by synthesizing and intercalating a new cationic aluminum-hydroxy ferric ferrocyanide compound into a cation-adsorbing nanoclay (montmorillonite). Chemical and structural properties were investigated by X-ray diffraction, transmission electron microscopy, thermogravimetric and differential thermal analyses, Fourier transform infrared, X-ray photoemission, and Mössbauer spectroscopies. Elemental analysis was based on proton-induced gamma ray emission and X-ray fluorescence spectroscopy data, N/C elemental ratios, and cation-exchange capacity measurements.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2009
The African shield-backed bug Calidea panaethiopica is a very colorful insect which produces a range of iridescent yellow, green, and blue reflections. The cuticle of the dorsal side of the insect, on the shield, the prothorax and part of the head, is pricked of uniformly distributed hemispherical hollow cavities a few tens micrometers deep. Under normal illumination and viewing the insect's muffin-tin shaped surface gives rise to two distinct colors: a yellow spot arising from the bottom of the well and a blue annular cloud that appears to float around the yellow spot.
View Article and Find Full Text PDF