Publications by authors named "Jean-Dominique LeMay"

In Streptococcus thermophilus, lactose is taken up by LacS, a transporter that comprises a membrane translocator domain and a hydrophilic regulatory domain homologous to the IIA proteins and protein domains of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The IIA domain of LacS (IIALacS) possesses a histidine residue that can be phosphorylated by HPr(His~P), a protein component of the PTS. However, determination of the cellular levels of the different forms of HPr, namely, HPr, HPr(His~P), HPr(Ser-P), and HPr(Ser-P)(His~P), in exponentially lactose-growing cells revealed that the doubly phosphorylated form of HPr represented 75% and 25% of the total HPr in S.

View Article and Find Full Text PDF

The lactic acid bacterium Streptococcus thermophilus is widely used by the dairy industry for its ability to transform lactose, the primary sugar found in milk, into lactic acid. Unlike the phylogenetically related species Streptococcus salivarius, S. thermophilus is unable to metabolize and grow on galactose and thus releases substantial amounts of this hexose into the external medium during growth on lactose.

View Article and Find Full Text PDF

The oral bacterium Streptococcus salivarius takes up lactose via a transporter called LacS that shares 95% identity with the LacS from Streptococcus thermophilus, a phylogenetically closely related organism. S. thermophilus releases galactose into the medium during growth on lactose.

View Article and Find Full Text PDF