Publications by authors named "Jean-Claude Sigoillot"

Background: Lavender () and lavandin (a sterile hybrid of  × ) essential oils are among those most commonly used in the world for various industrial purposes, including perfumes, pharmaceuticals and cosmetics. The solid residues from aromatic plant distillation such as lavender- and lavandin-distilled straws are generally considered as wastes, and consequently either left in the fields or burnt. However, lavender- and lavandin-distilled straws are a potentially renewable plant biomass as they are cheap, non-food materials that can be used as raw feedstocks for green chemistry industry.

View Article and Find Full Text PDF

The purpose of this work was to optimize the pretreatment process of wheat straw by Polyporus brumalis_BRFM985 in order to improve carbohydrate accessibility for more efficient bioconversion. Indeed, there is growing demands to develop sustainable routes for lignocellulosic feedstocks valorization into value-added products in energy, chemicals, materials, and animal feed fields. To be achieved, implementation of cheap and ecofriendly biomass pretreatment processes is necessary.

View Article and Find Full Text PDF

Rapeseed meal is a cheap and abundant raw material, particularly rich in phenolic compounds of biotechnological interest. In this study, we developed a two-step bioconversion process of naturally occurring sinapic acid (4-hydroxy-3,5-dimethoxycinnamic acid) from rapeseed meal into canolol by combining the complementary potentialities of two filamentous fungi, the micromycete and the basidiomycete . Canolol could display numerous industrial applications because of its high antioxidant, antimutagenic and anticarcinogenic properties.

View Article and Find Full Text PDF

The potential of fungal pretreatment to improve fermentable sugar yields from wheat straw or Miscanthus was investigated. We assessed 63 fungal strains including 53 white-rot and 10 brown-rot fungi belonging to the Basidiomycota phylum in an original 12 day small-scale solid-state fermentation (SSF) experiment using 24-well plates. This method offers the convenience of one-pot processing of samples from SSF to enzymatic hydrolysis.

View Article and Find Full Text PDF

Background: Lactic acid is the building block of poly-lactic acid (PLA), a biopolymer that could be set to replace petroleum-based plastics. To make lactic acid production cost-effective, the production process should be carried out at low pH, in low-nutrient media, and with a low-cost carbon source. Yeasts have been engineered to produce high levels of lactic acid at low pH from glucose but not from carbohydrate polymers (e.

View Article and Find Full Text PDF

The Lavandula genus, which includes lavender (Lavandula angustifolia) and lavandin (L. angustifolia × Lavandula latifolia), is cultivated worldwide for its essential oils, which find applications in perfumes, cosmetics, food processing and, more recently, in aromatherapy products. The chemical composition of lavender and lavandin essential oils, usually produced by steam distillation from the flowering stems, is characterized by the presence of terpenes (e.

View Article and Find Full Text PDF

Background: Saprophytic filamentous fungi are ubiquitous micro-organisms that play an essential role in photosynthetic carbon recycling. The wood-decayer Pycnoporus cinnabarinus is a model fungus for the study of plant cell wall decomposition and is used for a number of applications in green and white biotechnology.

Results: The 33.

View Article and Find Full Text PDF

Lactic acid is a valuable and fully degradable organic acid with promising applications in poly-lactic acid production (Taskila S and Ojamo, 2013 [1]). Despite their efficiency, the cost of the current lactic acid bio-processes is still an obstacle to this application (Miller et al., 2011 [2]).

View Article and Find Full Text PDF

The genome of the coprophilic ascomycete Podospora anserina encodes 33 different genes encoding copper-dependent lytic polysaccharide monooxygenases (LPMOs) from glycoside hydrolase family 61 (GH61). In this study, two of these enzymes (P. anserina GH61A [PaGH61A] and PaGH61B), which both harbored a family 1 carbohydrate binding module, were successfully produced in Pichia pastoris.

View Article and Find Full Text PDF

Pycnoporus cinnabarinus laccase and a chimeric laccase-CBM were applied in softwood kraft pulp biobleaching in the presence of 1-hydroxybenzotriazole (HBT). The presence of CBM could enhance the laccase biobleaching potential as a decrease in the enzymatic charge and chlorine dioxide consumption, as well as an increase in pulp brightness were observed. Laccase/HBT treatment could be improved by increasing oxygen pressure from 1 to 3bar and pulp consistency from 5% to 10%.

View Article and Find Full Text PDF

Rapeseed and sunflower are two of the world's major oilseeds. Rapeseed and sunflower meal (RSM and SFM), the by-products of oil extraction, are produced in large quantities. They are mainly composed of proteins, lignocellulosic fibres and minerals.

View Article and Find Full Text PDF

Fusarium verticillioides secretes enzymes (secretome), some of which might be potentially useful for saccharification of lignocellulosic biomass since supplementation of commercial cellulases from Trichoderma reesei with the F. verticillioides secretome improved the enzymatic release of glucose, xylose and arabinose from wheat straw by 24%, 88% and 68%, respectively. Determination of enzymatic activities revealed a broad range of hemicellulases and pectinases poorly represented in commercial cocktails.

View Article and Find Full Text PDF

Background: Cellobiose dehydrogenase (CDH) is an extracellular hemoflavoenzyme produced by lignocellulose-degrading fungi including Pycnoporus cinnabarinus. We investigated the cellulolytic system of P. cinnabarinus, focusing on the involvement of CDH in the deconstruction of lignocellulosic biomass.

View Article and Find Full Text PDF

The genus Pycnoporus forms a cosmopolitan group of four species belonging to the polyporoid white-rot fungi, the most representative group of homobasidiomycetes causing wood decay. Pycnoporus fungi are listed as food- and cosmetic-grade microorganisms and emerged in the early 1990s as a genus whose biochemistry, biodegradation and biotechnological properties have since been progressively detailed. First highlighted for their original metabolic pathways involved in the functionalization of plant cell wall aromatic compounds to yield high-value molecules, e.

View Article and Find Full Text PDF

Background: Mannans are key components of lignocellulose present in the hemicellulosic fraction of plant primary cell walls. Mannan endo-1,4-beta-mannosidases (1,4-beta-D-mannanases) catalyze the random hydrolysis of beta-1,4-mannosidic linkages in the main chain of beta-mannans. Biodegradation of beta-mannans by the action of thermostable mannan endo-1,4-beta-mannosidase offers significant technical advantages in biotechnological industrial applications, i.

View Article and Find Full Text PDF

Pycnoporus cinnabarinus laccase was fused to the C-terminal linker and carbohydrate binding module (CBM) of Aspergillus niger cellobiohydrolase B (CBHB). The chimeric enzyme of molecular mass 100 kDa was successfully produced in A. niger.

View Article and Find Full Text PDF

Background: Due to its capacity to produce large amounts of cellulases, Trichoderma reesei is increasingly been researched in various fields of white biotechnology, especially in biofuel production from lignocellulosic biomass. The commercial enzyme mixtures produced at industrial scales are not well characterized, and their proteinaceous components are poorly identified and quantified. The development of proteomic methods has made it possible to comprehensively overview the enzymes involved in lignocellulosic biomass degradation which are secreted under various environmental conditions.

View Article and Find Full Text PDF

Proteomic analysis was performed to determine and differentiate the composition of the secretomes of Phanerochaete chrysosporium CIRM-BRFM41, a peroxidase hypersecretory strain grown under ligninolytic conditions and on softwood chips under biopulping conditions. Extracellular proteins from both cultures were analyzed by bidimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry. A total of 37 spots were identified.

View Article and Find Full Text PDF

We propose a new process using a vapor phase bioreactor (VPB) to simultaneously (i) delignify sugar-cane bagasse, a residue of sugar production that can be recycled in paper industry, and (ii) produce laccase, an enzyme usable to bleach paper pulp. Ethanol vapor, used as laccase inducer, was blown up through a VPB packed with bagasse and inoculated with Pycnoporus cinnabarinusss3, a laccase-hyperproducing fungal strain. After 28 days, the laccase activity in the ethanol-treated bagasse was 80-fold higher (80 U g(ds)(-)(1)) and the bagasse delignification percentage was 12-fold (12%) higher than in the reference samples produced in the absence of ethanol, corresponding to a high overall pulp yield of 96.

View Article and Find Full Text PDF

Wheat and oilseed flax straws were studied as raw material for papermaking. Two different aspects were investigated to valorize these agricultural byproducts: the capacity to recover some phenolic compounds and the use of the resulting cellulose fibers in papermaking. Straw phenolic compound composition was analyzed to determine the different accessible molecules and their available quantity.

View Article and Find Full Text PDF

Agro-industrial by-products are a potential source of added-value phenolic acids with promising applications in the food and pharmaceutical industries. Here two purified feruloyl esterases from Aspergillus niger, FAEA and FAEB were tested for their ability to release phenolic acids such as caffeic acid, p-coumaric acid and ferulic acid from coffee pulp, apple marc and wheat straw. Their hydrolysis activity was evaluated and compared with their action on maize bran and sugar beet pulp.

View Article and Find Full Text PDF

A new tyrosinase-encoding gene (2,204 bp) and the corresponding cDNA (1,857 nucleotides) from the white-rot fungus Pycnoporus sanguineus BRFM49 were cloned. This gene consisted of seven exons and six introns and encoded a predicted protein of 68 kDa, exceeding the mature tyrosinase by 23 kDa. P.

View Article and Find Full Text PDF

Wild and recombinant hydrolases and oxidoreductases with a potential interest for environmentally sound bleaching of high-quality paper pulp (from flax) were incorporated into a totally chlorine free (TCF) sequence that also included a peroxide stage. The ability of feruloyl esterase (from Aspergillus niger) and Mn2+-oxidizing peroxidases (from Phanerochaete chrysosporium and Pleurotus eryngii) to decrease the final lignin content of flax pulp was shown. Laccase from Pycnoporus cinnabarinus (without mediator) also caused a slight improvement of pulp brightness that was increased in the presence of aryl-alcohol oxidase.

View Article and Find Full Text PDF

Laboratory experiments were conducted to study the potential of adding gaseous toluene, as a readily degradable carbon source, to enhance phenanthrene mineralization in polluted soil (1,000 mg/kg(dry soil)) aged for 400 days. Experiments were conducted in 0.5-L column reactors packed with a mixture of (80:20 w(wet)/w(wet)) spiked soil and vermiculite and fed with 1 g m(-3)reactor h(-1) toluene load in air.

View Article and Find Full Text PDF