Functionalized multi-walled carbon nanotubes (MWCNTs) containing radioactive salts are proposed as a potential system for radioactivity delivery. MWCNTs are loaded with isotopically enriched 152-samarium chloride (SmCl), the ends of the MWCNTs are sealed by high temperature treatment, and the encapsulated Sm is neutron activated to radioactive Sm. The external walls of the radioactive nanocapsules are functionalized through arylation reaction, to introduce hydrophilic chains and increase the water dispersibility of CNTs.
View Article and Find Full Text PDFRadiation therapy along with chemotherapy and surgery remain the main cancer treatments. Radiotherapy can be applied to patients externally (external beam radiotherapy) or internally (brachytherapy and radioisotope therapy). Previously, nanoencapsulation of radioactive crystals within carbon nanotubes, followed by end-closing, resulted in the formation of nanocapsules that allowed ultrasensitive imaging in healthy mice.
View Article and Find Full Text PDFPurpose: To evaluate the feasibility of radioimmunotherapy (RIT) with radiolabeled anti-carcinoembryonic antigen antibodies after complete resection of liver metastases (LM) from colorectal cancer.
Patients And Methods: Twenty-two patients planned for surgery of one to four LM received a preoperative diagnostic dose of a 131I-F(ab')2-labeled anti-carcinoembryonic antigen monoclonal antibody F6 (8-10 mCi/5 mg). 131I-F(ab')2 uptake was analyzed using direct radioactivity counting, and tumor-to-normal liver ratios were recorded.