Publications by authors named "Jean-Claude Pech"

Tomato is a model for fruit development and ripening. The isolation of intact plastids from this organism is therefore important for metabolic and proteomic analyses. Pepper, a species from the same family, is also of interest since it allows isolation of intact chromoplasts in large amounts.

View Article and Find Full Text PDF

Ethylene Response Factors (ERFs) are downstream components of the ethylene signal transduction pathway, although their role in ethylene-dependent developmental processes remains poorly understood. As the ethylene-inducible tomato Sl-ERF.B3 has been shown previously to display a strong binding affinity to GCC-box-containing promoters, its physiological significance was addressed here by a reverse genetics approach.

View Article and Find Full Text PDF

Background: Mature-fruit abscission (MFA) in fleshy-fruit is a genetically controlled process with mechanisms that, contrary to immature-fruit abscission, has not been fully characterized. Here, we use pyrosequencing to characterize the transcriptomes of melon abscission zone (AZ) at three stages during AZ-cell separation in order to understand MFA control at an early stage of AZ-activation.

Principal Findings: The results show that by early induction of MFA, the melon AZ exhibits major gene induction, while by late induction of MFA, melon AZ shows major gene repression.

View Article and Find Full Text PDF

Successful completion of fruit developmental programs depends on the interplay between multiple phytohormones. However, besides ethylene, the impact of other hormones on fruit quality traits remains elusive. A previous study has shown that down-regulation of SlARF4, a member of the tomato (Solanum lycopersicum) auxin response factor (ARF) gene family, results in a dark-green fruit phenotype with increased chloroplasts (Jones et al.

View Article and Find Full Text PDF

Background: The phytohormone ethylene is involved in a wide range of developmental processes and in mediating plant responses to biotic and abiotic stresses. Ethylene signalling acts via a linear transduction pathway leading to the activation of Ethylene Response Factor genes (ERF) which represent one of the largest gene families of plant transcription factors. How an apparently simple signalling pathway can account for the complex and widely diverse plant responses to ethylene remains yet an unanswered question.

View Article and Find Full Text PDF

A comparative proteomic approach was performed to identify differentially expressed proteins in plastids at three stages of tomato (Solanum lycopersicum) fruit ripening (mature-green, breaker, red). Stringent curation and processing of the data from three independent replicates identified 1,932 proteins among which 1,529 were quantified by spectral counting. The quantification procedures have been subsequently validated by immunoblot analysis of six proteins representative of distinct metabolic or regulatory pathways.

View Article and Find Full Text PDF

A tomato short-chain dehydrogenase-reductase (SlscADH1) is preferentially expressed in fruit with a maximum expression at the breaker stage while expression in roots, stems, leaves and flowers is very weak. It represents a potential candidate for the formation of aroma volatiles by interconverting alcohols and aldehydes. The SlscADH1 recombinant protein produced in Escherichia coli exhibited dehydrogenase-reductase activity towards several volatile compounds present in tomato flavour with a strong preference for the NAD/NADH co-factors.

View Article and Find Full Text PDF

Background And Aims: There are several studies suggesting that tomato (Solanum lycopersicum) chromoplasts arise from chloroplasts, but there is still no report showing the fluorescence of both chlorophylls and carotenoids in an intermediate plastid, and no video showing this transition phase.

Methods: Pigment fluorescence within individual plastids, isolated from tomato fruit using sucrose gradients, was observed at different ripening stages, and an in situ real-time recording of pigment fluorescence was performed on live tomato fruit slices.

Key Results: At the mature green and red stages, homogenous fractions of chloroplasts and chromoplasts were obtained, respectively.

View Article and Find Full Text PDF

Chromoplasts are carotenoid-accumulating plastids conferring color to many flowers and fruits as well as to some tubers and roots. Chromoplast differentiation proceeds from preexisting plastids, most often chloroplasts. One of the most prominent changes is remodeling of the internal membrane system associated with the formation of carotenoid-accumulating structures.

View Article and Find Full Text PDF

Mountain papaya ( Vasconcellea pubescens ) is a climacteric fruit that develops a strong and characteristic aroma during ripening. Esters are the main volatile compounds produced by the fruit, and most of them are dependent on ethylene. As esters are synthesized through alcohol acyltransferases (AAT), a full-length cDNA (VpAAT1) was isolated that displayed the characteristic motifs of most plant acyltransferases.

View Article and Find Full Text PDF

Chromoplasts are non-photosynthetic specialized plastids that are important in ripening tomato fruit (Solanum lycopersicum) since, among other functions, they are the site of accumulation of coloured compounds. Analysis of the proteome of red fruit chromoplasts revealed the presence of 988 proteins corresponding to 802 Arabidopsis unigenes, among which 209 had not been listed so far in plastidial databanks. These data revealed several features of the chromoplast.

View Article and Find Full Text PDF

Indole Acetic Acid 9 (IAA9) is a negative auxin response regulator belonging to the Aux/IAA transcription factor gene family whose downregulation triggers fruit set before pollination, thus giving rise to parthenocarpy. In situ hybridization experiments revealed that a tissue-specific gradient of IAA9 expression is established during flower development, the release of which upon pollination triggers the initiation of fruit development. Comparative transcriptome and targeted metabolome analysis uncovered important features of the molecular events underlying pollination-induced and pollination-independent fruit set.

View Article and Find Full Text PDF

Whereas the interplay of multiple hormones is essential for most plant developmental processes, the key integrating molecular players remain largely undiscovered or uncharacterized. It is shown here that a member of the tomato auxin/indole-3-acetic acid (Aux/IAA) gene family, Sl-IAA3, intersects the auxin and ethylene signal transduction pathways. Aux/IAA genes encode short-lived transcriptional regulators central to the control of auxin responses.

View Article and Find Full Text PDF

Alcohol acyltransferases (AAT) play a key role in the biosynthesis of ester aroma volatiles in fruit. Three ripening-specific recombinant AATs of cantaloupe Charentais melon fruit (Cm-AAT1, Cm-AAT3, and Cm-AAT4) are capable of synthesizing thioether esters with Cm-AAT1 being by far the most active. All proteins, as well as AAT(s) extracted from melon fruit, are active as tetramers of around 200 kDa.

View Article and Find Full Text PDF

Cell wall disassembly in ripening fruit is highly complex, involving the dismantling of multiple polysaccharide networks by diverse families of wall-modifying proteins. While it has been reported in several species that multiple members of each such family are expressed in the same fruit tissue, it is not clear whether this reflects functional redundancy, with protein isozymes from a single enzyme class performing similar roles and contributing equally to wall degradation, or whether they have discrete functions, with some isoforms playing a predominant role. Experiments reported here sought to distinguish between cell wall-related processes in ripening melon that were softening-associated and softening-independent.

View Article and Find Full Text PDF

Alcohol dehydrogenases (ADH) participate in the biosynthetic pathway of aroma volatiles in fruit by interconverting aldehydes to alcohols and providing substrates for the formation of esters. Two highly divergent ADH genes (15% identity at the amino acid level) of Cantaloupe Charentais melon (Cucumis melo var. Cantalupensis) have been isolated.

View Article and Find Full Text PDF

Ethylene response factors (ERFs) are plant transcriptional regulators mediating ethylene-dependent gene expression via binding to the GCC motif found in the promoter region of ethylene-regulated genes. We report here on the structural and functional characterization of the tomato Sl-ERF2 gene that belongs to a distinct class of the large ERF gene family. Both spliced and unspliced versions of Sl-ERF2 transcripts were amplified from RNA samples and the search in the public tomato expressed sequence tag (EST) database confirmed the existence of the two transcript species in a number of cDNA libraries.

View Article and Find Full Text PDF

Volatile esters, a major class of compounds contributing to the aroma of many fruit, are synthesized by alcohol acyl-transferases (AAT). We demonstrate here that, in Charentais melon (Cucumis melo var. cantalupensis), AAT are encoded by a gene family of at least four members with amino acid identity ranging from 84% (Cm-AAT1/Cm-AAT2) and 58% (Cm-AAT1/Cm-AAT3) to only 22% (Cm-AAT1/Cm-AAT4).

View Article and Find Full Text PDF

Auxin/indole-3-acetic acid (Aux/IAA) proteins are transcriptional regulators that mediate many aspects of plant responses to auxin. While functions of most Aux/IAAs have been defined mainly by gain-of-function mutant alleles in Arabidopsis thaliana, phenotypes associated with loss-of-function mutations have been scarce and subtle. We report here that the downregulation of IAA9, a tomato (Solanum lycopersicum) gene from a distinct subfamily of Aux/IAA genes, results in a pleiotropic phenotype, consistent with its ubiquitous expression pattern.

View Article and Find Full Text PDF

A cDNA clone (LeCRK1), encoding a novel isoform of calcium-dependent protein kinase (CDPK), was isolated by screening a tomato (Lycopersicon esculentum) cDNA library. The protein derived from the full-length sequence indicated that it belongs to the family of CDPK-related kinases (CRKs) and the predicted amino acid sequence shows a modular organization of the protein consisting of different characteristic domains. The kinase domain of LeCRK1 shares a high degree of similarity with the catalytic domain of CDPKs.

View Article and Find Full Text PDF

Ethylene-induced ripening in tomato (Lycopersicon esculentum) resulted in the accumulation of a transcript designated LeEF-Ts(mt) that encodes a protein with significant homology to bacterial Ts translational elongation factor (EF-Ts). Transient expression in tobacco and sunflower protoplasts of full-length and truncated LeEF-Ts(mt)-GFP fusion constructs and confocal microscopy observations clearly demonstrated the targeting of LeEF-Ts(mt) to mitochondria and not to chloroplasts and the requirement for a signal peptide for the proper sorting of the protein. Escherichia coli recombinant LeEF-Ts(mt) co-eluted from Ni-NTA resins with a protein corresponding to the molecular weight of the elongation factor EF-Tu of E.

View Article and Find Full Text PDF

Four new members of the ERF (ethylene-response factor) family of plant-specific DNA-binding (GCC box) factors were isolated from tomato fruit (LeERF1-4). Phylogenetic analysis indicated that LeERF2 belongs to a new ERF class, characterized by a conserved N-terminal signature sequence. Expression patterns and cis/trans binding affinities differed between the LeERFs.

View Article and Find Full Text PDF

Following differential screening of gene expression during tomato fruit development, we isolated developmentally regulated (DR) clones, including several putative transcription factors. Based on sequence homology, DR1, DR3, DR4 and DR8 are members of the Aux/IAA family, and DR12 belongs to the auxin response factor (ARF) family of transcription factors. Importantly, mRNA accumulation for the Aux/IAA-like genes was regulated by ethylene in tomato fruit but not in the leaves, indicating that these putative auxin response components also participate to the ethylene-dependent regulation of gene expression in a tissue-specific manner.

View Article and Find Full Text PDF

LeCTR1 was initially isolated by both differential display reverse transcriptase-polymerase chain reaction screening for tomato (Lycopersicon esculentum) fruit ethylene-inducible genes and through homology with the Arabidopsis CTR1 cDNA. LeCTR1 shares strong nucleotide sequence homology with Arabidopsis CTR1, a gene acting downstream of the ethylene receptor and showing similarity to the Raf family of serine/threonine protein kinases. The length of the LeCTR1 transcribed region from ATG to stop codon (12,000 bp) is more than twice that of Arabidopsis CTR1 (4,700 bp).

View Article and Find Full Text PDF

Fruit ripening and abscission are associated with an ethylene burst in several melon (Cucumis melo) genotypes. In cantaloupe as in other climacteric fruit, exogenous ethylene can prematurely induce abscission, ethylene production, and ripening. Melon genotypes without fruit abscission or without ethylene burst also exist and are, therefore, non-climacteric.

View Article and Find Full Text PDF