A time-domain plane wave superposition method is proposed to reconstruct nonstationary sound fields. In this method, the sound field is expressed as a superposition of time convolutions between the estimated time-wavenumber spectrum of the sound pressure on a virtual source plane and the time-domain propagation kernel at each wavenumber. By discretizing the time convolutions directly, the reconstruction can be carried out iteratively in the time domain, thus providing the advantage of continuously reconstructing time-dependent pressure signals.
View Article and Find Full Text PDFA number of sound field separation techniques have been proposed for different purposes. However, these techniques just consider the separation of sound fields in the space domain and are restricted to stationary sound fields. When the sound fields are nonstationary, it is also necessary to perform the separation in the time domain.
View Article and Find Full Text PDFNear-field acoustic holography is a measuring process for locating and characterizing stationary sound sources from measurements made by a microphone array in the near-field of the acoustic source plane. A technique called real-time near-field acoustic holography (RT-NAH) has been introduced to extend this method in the case of nonstationary sources. This technique is based on a formulation which describes the propagation of time-dependent sound pressure signals on a forward plane using a convolution product with an impulse response in the time-wavenumber domain.
View Article and Find Full Text PDFThe aim of this work is to continuously provide the acoustic pressure field radiated from nonstationary sources. From the acquisition in the nearfield of the sources of a planar acoustic field which fluctuates in time, the method gives instantaneous sound field with respect to time by convolving wavenumber spectra with impulse response and then inverse Fourier transforming into space for each time step. The quality of reconstruction depends on the impulse response which is composed of investigated parameters as transition frequency and propagation distance.
View Article and Find Full Text PDFThe patch holography method allows one to make measurements on an extended structure using a small microphone array. Increased attention has been paid to the two techniques, which are quite different at first glance. One is to extrapolate the pressure field measured on the hologram plane while the other is to use statistically optimized processing.
View Article and Find Full Text PDFIt was recently shown that the statistical errors of the measurement in the acoustic energy density by the two microphone method in waveguide have little variation when the losses of coherence between microphones increase. To explain these intervals of uncertainty, the variance of the measurement is expressed in this paper as a function of the various energy quantities of the acoustic fields--energy densities and sound intensities. The necessary conditions to reach the lower bound are clarified.
View Article and Find Full Text PDFOpportunities for full field 2D amplitude and phase vibration analysis are presented. It is demonstrated that it is possible to simultaneously encode-decode 2D the amplitude and phase of harmonic mechanical vibrations. The process allows the determination of in plane and out of plane vibration components when the object is under a pure sinusoidal excitation.
View Article and Find Full Text PDFA setup that permits full-field vibration amplitude and phase retrieval with digital Fresnel holography is presented. Full reconstruction of the vibration is achieved with a three-step stroboscopic holographic recording, and an extraction algorithm is proposed. The finite temporal width of the illuminating light is considered in an investigation of the distortion of the measured amplitude and phase.
View Article and Find Full Text PDF