J Neurophysiol
September 2012
Accurate control of grip force during object manipulation is necessary to prevent the object from slipping, especially to compensate for the action of gravitational and inertial forces resulting from hand/object motion. The goal of the current study was to assess whether the control of grip force was influenced by visually induced self-motion (i.e.
View Article and Find Full Text PDFNumerous studies highlighted the influence of a tilted visual frame on the perception of the visual vertical ('rod-and-frame effect' or RFE). Here, we investigated whether this influence can be modified in a virtual immersive environment (CAVE-like) by the structure of the visual scene and by the adjustment mode allowing visual or visuo-kinaesthetic control (V and VK mode, respectively). The way this influence might dynamically evolve throughout the adjustment was also investigated in two groups of subjects with the head unrestrained or restrained upright.
View Article and Find Full Text PDFThe present study aimed at determining whether vestibular inputs contribute to the perception of the direction of self-motion. This question was approached by investigating the effects of binaural bipolar galvanic vestibular stimulation (GVS) on visually induced self-motion (i.e.
View Article and Find Full Text PDF