We demonstrate that different sets of Lennard-Jones parameters proposed for the Na(+) ion, in conjunction with the empirical combining rules routinely used in simulation packages, can lead to essentially different equilibrium structures for a deprotonated poly-L-glutamic acid molecule (poly-L-glutamate) dissolved in a 0.3M aqueous NaCl solution. It is, however, difficult to discriminate a priori between these model potentials; when investigating the structure of the Na(+)-solvation shell in bulk NaCl solution, all parameter sets lead to radial distribution functions and solvation numbers in broad agreement with the available experimental data.
View Article and Find Full Text PDFNumerous experimental and theoretical investigations have been devoted to the hydrogen bond in pure liquids and mixtures. Among the different theoretical approaches, molecular dynamics (MD) simulations are predominant in obtaining detailed information, on the molecular level, simultaneously on the structure and the dynamics. Water and methanol are the two most prominent hydrogen-bonded liquids, and they and their mixtures have consequently been the subject of many studies; we revisit here the problem of the mixtures.
View Article and Find Full Text PDFMolecular dynamics simulations of liquid quinoline have been performed at experimental densities corresponding to the temperature range 276-320 K. The intermolecular potential is a simple effective two-body potential between rigid molecules having 17 atomic Lennard-Jones and electrostatic Coulomb interaction sites. The vaporization enthalpy is overestimated by 8-9% with respect to the experimental value.
View Article and Find Full Text PDF