The striatum is a brain structure involved in the control of voluntary movement. Striatum contains high amounts of retinoic acid, the active metabolite of vitamin A, as well as retinoid receptors, RARβ and RXRγ. Previous studies revealed that disruption of retinoid signaling initiated during development is deleterious for striatal physiology and related motor functions.
View Article and Find Full Text PDFDiabetologia
September 2023
Aims/hypothesis: Children with diabetes may display cognitive alterations although vascular disorders have not yet appeared. Variations in glucose levels together with relative insulin deficiency in treated type 1 diabetes have been reported to impact brain function indirectly through dysregulation of the hypothalamus-pituitary-adrenal axis. We have recently shown that enhancement of glucocorticoid levels in children with type 1 diabetes is dependent not only on glucocorticoid secretion but also on glucocorticoid tissue concentrations, which is linked to 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity.
View Article and Find Full Text PDFBackground: Vitamin A (VitA), via its active metabolite retinoic acid (RA), is critical for the maintenance of memory function with advancing age. Although its role in Alzheimer's disease (AD) is not well understood, data suggest that impaired brain VitA signaling is associated with the accumulation of β-amyloid peptides (Aβ), and could thus contribute to the onset of AD.
Methods: We evaluated the protective action of a six-month-long dietary VitA-supplementation (20 IU/g), starting at 8 months of age, on the memory and the neuropathology of the 3xTg-AD mouse model of AD (n = 11-14/group; including 4-6 females and 7-8 males).
Neuroinflammation is a key feature shared by most, if not all, neuropathologies. It involves complex biological processes that act as a protective mechanism to fight against the injurious stimuli, but it can lead to tissue damage if self-perpetuating. In this context, microglia, the main cellular actor of neuroinflammation in the brain, are seen as a double-edged sword.
View Article and Find Full Text PDFAll neuronal cells hold the same genetic information but vary by their structural and functional plasticity depending on the brain area and environmental influences. Such variability involves specific gene regulation, which is driven by transcription factors (TFs). In the field of neuroscience, epigenetics is the main mechanism that has been investigated to understand the dynamic modulation of gene expression by behavioral responses, stress responses, memory processes, etc.
View Article and Find Full Text PDFChicks subjected to early stressful factors could develop long-lasting effects on their performances, welfare and health. Free access to essential oils (EO) in poultry farming could mitigate these effects and potentially reduce use of antimicrobial drugs. This study on chicken analyzed long-lasting effects of post-hatch adverse conditions (Delayed group), and the impact of EO intake on blood physiological parameters and transcriptome.
View Article and Find Full Text PDFBackground: Early consumption of obesogenic diets, rich in saturated fat and added sugar, is associated with a plethora of biological dysfunctions, at both peripheral and brain levels. Obesity is also linked to decreased vitamin A bioavailability, an essential molecule for brain plasticity and memory function.
Methods: Here we investigated in mice whether dietary vitamin A supplementation (VAS) could prevent some of the metabolic, microbiota, neuronal and cognitive alterations induced by obesogenic, high-fat and high-sugar diet (HFSD) exposure from weaning to adulthood, i.
Food is a powerful entrainment cue for circadian clocks in peripheral tissues, and changes in the composition of nutrients have been demonstrated to metabolically reprogram peripheral clocks. However, how food challenges may influence circadian metabolism of the master clock in the suprachiasmatic nucleus (SCN) or in other brain areas is poorly understood. Using high-throughput metabolomics, we studied the circadian metabolome profiles of the SCN and medial prefrontal cortex (mPFC) in lean mice compared with mice challenged with a high-fat diet (HFD).
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFAn integrated analysis of gut microbiota, blood biochemical and metabolome in 52 endurance horses was performed. Clustering by gut microbiota revealed the existence of two communities mainly driven by diet as host properties showed little effect. Community 1 presented lower richness and diversity, but higher dominance and rarity of species, including some pathobionts.
View Article and Find Full Text PDFRationale: Intestinal permeability plays an important role in gut-brain axis communication. Recent studies indicate that intestinal permeability increases in neonate pups during maternal separation (MS).
Objectives: The present study aims to determine whether pharmacological inhibition of myosin light chain kinase (MLCK), which regulates tight junction contraction and controls intestinal permeability, in stressed neonates, protects against the long-term effects of MS.
Background/aims: Glucocorticoids are essential in modulating memory processes of emotionally arousing experiences and we have shown that corticosteroid-binding globulin (CBG) influences glucocorticoid delivery to the brain. Here, we investigated the role of CBG in contextual and recognition long-term memory according to stress intensity.
Method: We used adult male mice totally deficient in CBG (Cbg KO) or brain-specific Cbg KO (CbgCamk KO) to examine their performance in contextual fear conditioning (CFC) and au-ditory fear conditioning, both at short (1 h) and long-term (24 h).
The accumulation of adverse events in utero and during childhood differentially increases the vulnerability to psychiatric diseases in men and women. Gut microbiota is highly sensitive to the early environment and has been recently hypothesized to affect brain development. However, the impact of early-life adversity on gut microbiota, notably with regards to sex differences, remains to be explored.
View Article and Find Full Text PDFPsychoneuroendocrinology
July 2018
The diagnosis of Type 1 Diabetes (T1D) in ever younger children led us to question the impact of insulin deficiency or chronic hyperglycemia on cerebral development and memory performances. Here, we sought abnormalities in these traits in a model of streptozotocin-induced diabetes in juvenile rats treated or not by insulin. We made the assumption that such alterations would be related, at least in part, to excessive glucocorticoid exposition in hippocampal neurons.
View Article and Find Full Text PDFBackground: Many asthmatic patients exhibit uncontrolled asthma despite high-dose inhaled corticosteroids (ICS). Airway epithelial cells (AEC) have distinct activation profiles that can influence ICS response.
Objectives: A pilot study to identify gene expression markers of AEC dysfunction and markers of corticosteroid sensitivity in asthmatic and non-asthmatic control children, for comparison with published reports in adults.
Glucocorticoid receptor (GR) function is modulated by phosphorylation. As retinoic acid (RA) can activate some cytoplasmic kinases able to phosphorylate GR, we investigated whether RA could modulate GR phosphorylation in neuronal cells in a context of long-term glucocorticoid exposure. A 4-day treatment of dexamethasone (Dex) plus RA, showed that RA potentiated the (Dex)-induced phosphorylation on GR Serine 220 (GR) in the nucleus of a hippocampal HT22 cell line.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
April 2017
Background: Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is often encountered in diabetes, leading to several clinical complications. Our recent results showing an elevated tetrahydrocortisol/tetrahydrocorticosterone ratio in morning urine of diabetic children compared to that of controls suggest an increased nocturnal activity of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in the former.
Question: We hypothesized that these observations could be explained by a reduced inhibition of hepatic 11β-HSD1 activity by exogenous insulin owing to its subcutaneous (SC) administration and absence of first hepatic passage.
The NR4A nuclear receptors subgroup, comprising Nur77 (NR4A1), Nurr1 (NR4A2), and Nor1 (NR4A3), are orphan receptors induced by a variety of signals, including stress. These receptors are described as early response genes and in vitro studies have shown that they take part in regulation of the hypothalamic-pituitary-adrenal (HPA) axis, the major stress-responsive neuroendocrine system. This study analyzes further the interweaving of NR4A receptors with the HPA axis at rest and after a restraint stress in vivo in mice.
View Article and Find Full Text PDFIncreasing evidence indicates an important role of steroid-binding proteins in endocrine functions, including hypothalamic-pituitary-adrenal (HPA) axis activity and regulation, as they influence bioavailability, local delivery, and cellular signal transduction of steroid hormones. In the plasma, glucocorticoids (GCs) are mainly bound to the corticosteroid-binding globulin (CBG) and to a lesser extend to albumin. Plasma CBG levels are therefore involved in the adaptive stress response, as they determine the concentration of free, biologically active GCs.
View Article and Find Full Text PDFCorticosteroid binding globulin (CBG, transcortin) has been shown to be expressed in the brain of rat and human species. In this study, we examined the CBG brain expression and cDNA structure in mice, comparing wild-type (Cbg(+/+)) and Cbg knockout mice (Cbg(-/-), obtained by genetic disruption of the SerpinA6 alias Cbg gene). We used double immunofluorescence labeling with specific neuronal and glial markers to analyze the cellular localization of CBG in various regions of the mouse brain.
View Article and Find Full Text PDFWe aimed at demonstrating that corticosteroid binding globulin (CBG), a plasma glycoprotein binding glucocorticoids with high affinity in blood, endorses a major role under stress conditions by regulating free glucocorticoid access to the brain and thereby influences glucocorticoid-dependent behaviors. Hence, we compared CBG-deficient mice (Cbg-/-) and their controls (Cbg+/+) in a specific memory task, i.e.
View Article and Find Full Text PDFBackground: Laser-capture microdissection (LCM) that enables the isolation of specific cell populations from complex tissues under morphological control is increasingly used for subsequent gene expression studies in cell biology by methods such as real-time quantitative PCR (qPCR), microarrays and most recently by RNA-sequencing. Challenges are i) to select precisely and efficiently cells of interest and ii) to maintain RNA integrity. The mammary gland which is a complex and heterogeneous tissue, consists of multiple cell types, changing in relative proportion during its development and thus hampering gene expression profiling comparison on whole tissue between physiological stages.
View Article and Find Full Text PDF