Publications by authors named "Jean-Christophe Ame"

The purification of poly(ADP-ribose) polymerase-3 (PARP-3) from overexpressing cells (Sf9 insect cells, Escherichia coli) has been updated to a fast and reproducible two-chromatographic-step protocol. After cell lysis, PARP-3 protein from the crude extract is affinity purified on a 3-aminobenzamide Sepharose™ chromatographic step. The last contaminants and the 3-methoxybenzamide used to elute PARP-3 from the previous affinity column are removed on the high-performance strong cation exchanger MonoQ™ matrix.

View Article and Find Full Text PDF

The purification of poly(ADP-ribose) glycohydrolase (PARG) from overexpressing bacteria Escherichia coli is described here as a fast and reproducible one chromatographic step protocol. After cell lysis, GST-PARG-fusion proteins from the crude extract are affinity purified by a glutathione 4B sepharose chromatographic step. The PARG proteins are then freed from their GST-fusion by overnight enzymatic cleavage using the preScission protease.

View Article and Find Full Text PDF

In breast cancer, Poly(ADP-ribose) polymerase 3 (PARP3) has been identified as a key driver of tumor aggressiveness exemplifying its selective inhibition as a promising surrogate for clinical activity onto difficult-to-treat cancers. Here we explored the role of PARP3 in the oncogenicity of glioblastoma, the most aggressive type of brain cancer. The absence of PARP3 did not alter cell proliferation nor the in vivo tumorigenic potential of glioblastoma cells.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma is a devastating disease with a 5-year overall survival of 9% for all stages. Gemcitabine-based chemoradiotherapy for locally advanced pancreatic cancer is highly toxic. We conducted an in vitro study to determine whether poly(ADP-ribose) polymerase-1 inhibition radiosensitized gemcitabine-based chemotherapy.

View Article and Find Full Text PDF

Background: The adaptation to hypoxia is mainly controlled by the HIF transcription factors. Increased expression/activity of HIF-1α correlates with poor prognosis in cancer patients. PARP-1 inhibitors are used in the clinic to treat BRCAness breast/ovarian cancer and have been shown to regulate the hypoxic response; therefore, their use could be expanded.

View Article and Find Full Text PDF

Parp3 is a member of the Poly(ADP-ribose) polymerase (Parp) family that has been characterized for its functions in strand break repair, chromosomal rearrangements, mitotic segregation and tumor aggressiveness. Yet its physiological implications remain unknown. Here we report a central function of Parp3 in the regulation of redox homeostasis in continuous neurogenesis in mice.

View Article and Find Full Text PDF

The purification of Poly(ADP-ribose) glycohydrolase (PARG) from overexpressing bacteria Escherichia coli is described here to a fast and reproducible one chromatographic step protocol. After cell lysis, GST-PARG-fusion proteins from the crude extract are affinity purified by a Glutathione 4B Sepharose chromatographic step. The PARG proteins are then freed from their GST-fusion by overnight enzymatic cleavage using the preScission protease.

View Article and Find Full Text PDF

The purification of poly(ADP-ribose) polymerase-3 (PARP-3) from overexpressing cells (Sf9 insect cells, Escherichia coli) has been updated to a fast and reproducible two chromatographic steps protocol. After cell lysis, PARP-3 protein from the crude extract is affinity purified on a 3-aminobenzamide Sepharose™ chromatographic step. The last contaminants and the 3-methoxybenzamide used to elute PARP-3 from the previous affinity column are removed on the high-performance strong cations exchanger MonoQ™ matrix.

View Article and Find Full Text PDF

Background: Poly(ADP-ribose) polymerase (PARP) inhibitors have entered the clinics for their promising anticancer effect as adjuvant in chemo- and radiotherapy and as single agent on BRCA-mutated tumours. Poly(ADP-ribose) glycohydrolase (PARG) deficiency was also shown to potentiate the cytotoxicity of genotoxic agents and irradiation. The aim of this study is to investigate the effect of PARG deficiency on BRCA1- and/or PTEN-deficient tumour cells.

View Article and Find Full Text PDF

In eukaryotes the stability of genome is provided by functioning of DNA repair systems. One of the main DNA repair pathways in eukaryotes is the base excision repair (BER). This system requires precise regulation for correct functioning.

View Article and Find Full Text PDF

Poly(ADP-ribosyl)ation is involved in numerous bio-logical processes including DNA repair, transcription and cell death. Cellular levels of poly(ADP-ribose) (PAR) are regulated by PAR polymerases (PARPs) and the degrading enzyme PAR glycohydrolase (PARG), controlling the cell fate decision between life and death in response to DNA damage. Replication stress is a source of DNA damage, leading to transient stalling of replication forks or to their collapse followed by the generation of double-strand breaks (DSB).

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerases (PARP) attach poly(ADP-ribose) (PAR) chains to various proteins including themselves and chromatin. Topoisomerase I (Top1) regulates DNA supercoiling and is the target of camptothecin and indenoisoquinoline anticancer drugs, as it forms Top1 cleavage complexes (Top1cc) that are trapped by the drugs. Endogenous and carcinogenic DNA lesions can also trap Top1cc.

View Article and Find Full Text PDF

Poly(ADP-ribosyl)ation is a posttranslational protein modification significant for genomic stability and cell survival in response to DNA damage. Poly(ADP-ribosyl)ation is catalyzed by poly(ADP-ribose)polymerases (PARPs). Among the 17 members of the PARP family, PARP-1 and PARP-2 are described as enzymes whose catalytic activity is stimulated by some types of DNA damages.

View Article and Find Full Text PDF

Poly-(ADP-ribose) glycohydrolase (PARG) is a catabolic enzyme that cleaves ADP-ribose polymers synthesized by poly-(ADP-ribose) polymerases. Here, transcriptome profiling and differentiation assay revealed a requirement of PARG for retinoic acid receptor (RAR)-mediated transcription. Mechanistically, PARG accumulates early at promoters of RAR-responsive genes upon retinoic acid treatment to promote the formation of an appropriate chromatin environment suitable for transcription.

View Article and Find Full Text PDF

Poly(ADP-ribosyl)ation (PARylation), a protein post-translational modification that was originally connected to the DNA damage response, is now known to engage in a continuously increasing number of biological processes. Despite extensive research and ceaseless, important findings about its role and mode of action, poly(ADP-ribose) remains an enigma regarding its structural complexity and diversity. The recent identification and structural characterization of four different poly(ADP-ribose) binding motifs represents a quantum leap in the comprehension of how this molecule can be decoded.

View Article and Find Full Text PDF

The purification of Poly(ADP-ribose) polymerases from overexpressing cells (Sf9 insect cells, Escherichia coli) has been updated to a fast and reproducible three chromatographic steps protocol. After cell lysis, proteins from the crude extract are separated on a Heparine Sepharose™ column. The PARP-containing fractions are then affinity purified on a 3-aminobenzamide Sepharose™ chromatographic step.

View Article and Find Full Text PDF

Post-translational poly(ADP-ribosyl)ation has diverse essential functions in the cellular response to DNA damage as it contributes to avid DNA damage detection and assembly of the cellular repair machinery but extensive modification eventually also induces cell death. While there are 17 human poly(ADP-ribose) polymerase (PARP) genes, there is only one poly(ADP-ribose) glycohydrolase (PARG) gene encoding several PARG isoforms located in different subcellular compartments. To investigate the recruitment of PARG isoforms to DNA repair sites we locally introduced DNA damage by laser microirradiation.

View Article and Find Full Text PDF

Poly(ADP-ribosyl)ation is a post-translational modification of proteins involved in the regulation of chromatin structure, DNA metabolism, cell division and cell death. Through the hydrolysis of poly(ADP-ribose) (PAR), Poly(ADP-ribose) glycohydrolase (PARG) has a crucial role in the control of life-and-death balance following DNA insult. Comprehension of PARG function has been hindered by the existence of many PARG isoforms encoded by a single gene and displaying various subcellular localizations.

View Article and Find Full Text PDF

Poly(ADP-ribosyl)ation is a posttranslational modification of proteins in higher eukaryotes mediated by poly(ADP-ribose) polymerases (PARPs) that is involved in many physiological processes such as DNA repair, transcription, cell division, and cell death. Biochemical studies together with PARP-1- or PARP-2-deficient cellular and animal models have revealed the redundant but also complementary functions of the two enzymes in the surveillance and maintenance of genome integrity. Poly(ADP-ribose) is degraded by the endo- and exo-glycosidase activities of poly(ADP-ribose) glycohydrolase (PARG).

View Article and Find Full Text PDF

Genome integrity is constantly threatened by DNA lesions arising from numerous exogenous and endogenous sources. Survival depends on immediate recognition of these lesions and rapid recruitment of repair factors. Using laser microirradiation and live cell microscopy we found that the DNA-damage dependent poly(ADP-ribose) polymerases (PARP) PARP-1 and PARP-2 are recruited to DNA damage sites, however, with different kinetics and roles.

View Article and Find Full Text PDF

The addition to proteins of the negatively charged polymer of ADP-ribose (PAR), which is synthesized by PAR polymerases (PARPs) from NAD(+), is a unique post-translational modification. It regulates not only cell survival and cell-death programmes, but also an increasing number of other biological functions with which novel members of the PARP family have been associated. These functions include transcriptional regulation, telomere cohesion and mitotic spindle formation during cell division, intracellular trafficking and energy metabolism.

View Article and Find Full Text PDF

Changes in chromatin structure emanating from DNA breaks are among the most initiating events in the damage response of the cell. In higher eukaryotes, poly(ADP-ribose) polymerase-1 (PARP-1) translates the occurrence of DNA breaks detected by its zinc-finger domain into a signal, poly ADP-ribose, synthesized and amplified by its DNA-damage dependent catalytic domain. This epigenetic mark on chromatin, induced by DNA discontinuities, is now considered as a part of a survival program aimed at protecting primarily chromatin integrity and stability.

View Article and Find Full Text PDF

In response to DNA strand breaks in the genome of higher eukaryotes, poly(ADP-ribose)polymerase 1 (PARP-1) catalyses the covalent attachment of ADP-ribose units from NAD(+) to various nuclear acceptor proteins including PARP-1 itself. This post-translational modification affecting proteins involved in chromatin architecture and in DNA repair plays a critical role in cell survival as well as in caspase-independent cell death. Although PARP-1 has been best-studied for its role in genome stability, several recent reports have demonstrated its role in the regulation of transcription.

View Article and Find Full Text PDF

Poly(ADP-ribosyl)ation is an immediate DNA-damage-dependent post-translational modification of histones and other nuclear proteins that contributes to the survival of injured proliferating cells. Poly(ADP-ribose) polymerases (PARPs) now constitute a large family of 18 proteins, encoded by different genes and displaying a conserved catalytic domain in which PARP-1 (113 kDa), the founding member, and PARP-2 (62 kDa) are so far the sole enzymes whose catalytic activity has been shown to be immediately stimulated by DNA strand breaks. A large repertoire of sequences encoding novel PARPs now extends considerably the field of poly(ADP-ribosyl)ation reactions to various aspects of the cell biology including cell proliferation and cell death.

View Article and Find Full Text PDF

The DNA damage-dependent poly(ADP-ribose) polymerase-2 (PARP-2) is, together with PARP-1, an active player of the base excision repair process, thus defining its key role in genome surveillance and protection. Telomeres are specialized DNA-protein structures that protect chromosome ends from being recognized and processed as DNA strand breaks. In mammals, telomere protection depends on the T(2)AG(3) repeat binding protein TRF2, which has been shown to remodel telomeres into large duplex loops (t-loops).

View Article and Find Full Text PDF