Publications by authors named "Jean-Cheng Kuo"

Dysregulated protein homeostasis, characterized by abnormal protein accumulation and aggregation, is a key contributor to the progression of neurodegenerative disorders such as Huntington's disease and spinocerebellar ataxia type 3 (SCA3). Previous studies have identified PIAS1 gene variants in patients with late-onset SCA3 and Huntington's disease. This study aims to elucidate the role of PIAS1 and its S510G variant in modulating the pathogenic mechanisms of SCA3.

View Article and Find Full Text PDF

Background: Sarcopenia, a group of muscle-related disorders, leads to the gradual decline and weakening of skeletal muscle over time. Recognizing the pivotal role of gastrointestinal conditions in maintaining metabolic homeostasis within skeletal muscle, we hypothesize that the effectiveness of the myogenic programme is influenced by the levels of gastrointestinal hormones in the bloodstream, and this connection is associated with the onset of sarcopenia.

Methods: We first categorized 145 individuals from the Emergency Room of Taipei Veterans General Hospital into sarcopenia and non-sarcopenia groups, following the criteria established by the Asian Working Group for Sarcopenia.

View Article and Find Full Text PDF

Biomechanical cues could effectively govern cell gene expression to direct the differentiation of specific stem cell lineage. Recently, the medium viscosity has emerged as a significant mechanical stimulator that regulates the cellular mechanical properties and various physiological functions. However, whether the medium viscosity can regulate the mechanical properties of human mesenchymal stem cells (hMSCs) to effectively trigger osteogenic differentiation remains uncertain.

View Article and Find Full Text PDF

Sarcopenia, a prevalent muscle disease characterized by muscle mass and strength reduction, is associated with impaired skeletal muscle regeneration. However, the influence of the biomechanical properties of sarcopenic skeletal muscle on the efficiency of the myogenic program remains unclear. Herein, we established a mouse model of sarcopenia and observed a reduction in stiffness within the sarcopenic skeletal muscle in vivo.

View Article and Find Full Text PDF

Purinosomes serve as metabolons to enhance de novo purine synthesis (DNPS) efficiency through compartmentalizing DNPS enzymes during stressed conditions. However, the mechanism underpinning purinosome assembly and its pathophysiological functions remains elusive. Here, we show that K6-polyubiquitination of the DNPS enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase (PAICS) by cullin-5/ankyrin repeat and SOCS box containing 11 (Cul5/ASB11)-based ubiquitin ligase plays a driving role in purinosome assembly.

View Article and Find Full Text PDF
Article Synopsis
  • The study aims to create a device that simulates human arterial blood vessels using fluid shear stress and cyclic stretch to replicate blood flow and pressure conditions.
  • The device allows for real-time observation of how endothelial cells react to various flow patterns and stretching, showing changes in cell shape and protein distribution.
  • By understanding these cellular responses to physical forces, the research could lead to better prevention and treatment methods for cardiovascular diseases.
View Article and Find Full Text PDF

Within the heterogeneous tissue architecture, a comprehensive understanding of how cell shapes regulate cytoskeletal mechanics by adjusting focal adhesions (FAs) signals to correlate with the lineage commitment of mesenchymal stromal cells (MSCs) remains obscure. Here, via engineered extracellular matrices, we observed that the development of mature FAs, coupled with a symmetrical pattern of radial fiber bundles, appeared at the right-angle vertices in cells with square shape. While circular cells aligned the transverse fibers parallel to the cell edge, and moved them centripetally in a counter-clockwise direction, symmetrical bundles of radial fibers at the vertices of square cells disrupted the counter-clockwise swirling and bridged the transverse fibers to move centripetally.

View Article and Find Full Text PDF

Paralogs, arising from gene duplications, increase the functional diversity of proteins. Protein functions in paralog families have been extensively studied, but little is known about the roles that intrinsically disordered regions (IDRs) play in their paralogs. Without a folded structure to restrain them, IDRs mutate more diversely along with evolution.

View Article and Find Full Text PDF

Up to 50% of head and neck squamous cell carcinoma (HNSCC) patients have lymph node (LN) metastasis, resulting in poor survival rate. Numerous studies have supported the notion that the alterations of gene expression and mechanical properties of cancer cells play an important role in cancer metastasis. However, which genes and how they regulate the biomechanical properties of HNSCC cells to promote LN metastasis remains elusive.

View Article and Find Full Text PDF

During differentiation, skeletal muscle develops mature multinucleated muscle fibers, which could contract to exert force on a substrate. Muscle dysfunction occurs progressively in patients with muscular dystrophy, leading to a loss of the ability to walk and eventually to death. The synthetic glucocorticoid dexamethasone (Dex) has been used therapeutically to treat muscular dystrophy by an inhibition of inflammation, followed by slowing muscle degeneration and stabilizing muscle strength.

View Article and Find Full Text PDF

Cancer metastasis involves not only cancer cells but also fibroblasts and the surrounding collagen matrices. Previous studies have reported that in tumor tissues, cancer cells and fibroblasts surrounded by dense collagen are often associated with a high risk of cancer metastasis. However, the mechanism of the interaction between the cancer cells, fibroblasts, and the surrounding collagen matrices to promote cancer cell invasion in different collagen concentration environments remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers explored how cell-cell adhesion can also influence cell behavior, similar to previous studies focused on cell-matrix interactions.
  • They engineered microstrip patterns with both cell-cell and cell-matrix adhesion ligands to investigate their effects on mesenchymal stem cells.
  • Findings revealed that both patterns of cell-cell adhesion and alternating patterns of cell-cell and cell-matrix ligands can guide cell movement and enhance differentiation, highlighting the complex interplay between different types of cellular adhesions.
View Article and Find Full Text PDF

Liquid-liquid phase separation (LLPS) explains many intracellular activities, but its role in extracellular functions has not been studied to the same extent. Here we report how LLPS mediates the extracellular function of galectin-3, the only monomeric member of the galectin family. The mechanism through which galectin-3 agglutinates (acting as a "bridge" to aggregate glycosylated molecules) is largely unknown.

View Article and Find Full Text PDF

X-linked juvenile retinoschisis (XLRS), linked to mutations in the RS1 gene, is a degenerative retinopathy with a retinal splitting phenotype. We generated human induced pluripotent stem cells (hiPSCs) from patients to study XLRS in a 3D retinal organoid in vitro differentiation system. This model recapitulates key features of XLRS including retinal splitting, defective retinoschisin production, outer-segment defects, abnormal paxillin turnover, and impaired ER-Golgi transportation.

View Article and Find Full Text PDF

Directed cell migration requires centrosome-mediated cell polarization and dynamical control of focal adhesions (FAs). To examine how FAs cooperate with centrosomes for directed cell migration, we used centrosome-deficient cells and found that loss of centrosomes enhanced the formation of acentrosomal microtubules, which failed to form polarized structures in wound-edge cells. In acentrosomal cells, we detected higher levels of Rac1-guanine nucleotide exchange factor TRIO (Triple Functional Domain Protein) on microtubules and FAs.

View Article and Find Full Text PDF

Mechanical remodeling of stromal collagen, such as reorientation and deformation of collagen matrix, generated by invading cancer cells, plays an important role in the progression of cancer invasion and metastasis. In this study, we applied time-lapse microscopy in conjunction with particle displacement mapping to analyze time-dependent contraction and expansion deformations of collagen surrounding individual spheroids of head and neck squamous cell carcinoma cells (HNSCC), OECM-1 & SAS, as the cancer cells detached from the spheroid and invaded into the surrounding 3D collagen matrix. Our results revealed that highly-invasive HNSCC spheroids, stimulated by epidermal growth factor (EGF), generated a strong contraction deformation of the surrounding collagen in the very early stage, and aligned the collagen fibers radially with respect to the center of the spheroid.

View Article and Find Full Text PDF
Article Synopsis
  • ARAP2 is an Arf GAP that influences focal adhesions (FAs) and regulates Akt signaling through its interaction with adaptor protein APPL1, as seen in various cell types.
  • While ARAP2's enzymatic activity is crucial for its role in FAs, its impact on pAkt levels occurs independently from its effects on FAs, indicating distinct regulatory mechanisms at play.
  • The study also highlights that both ARAP2 and APPL1 collaboratively modulate pAkt levels, suggesting their combined role in cellular signaling pathways beyond just FAs.
View Article and Find Full Text PDF

Directed cell migration is an important step in effective wound healing and requires the dynamic control of the formation of cell-extracellular matrix interactions. Plasma fibronectin is an extracellular matrix glycoprotein present in blood plasma that plays crucial roles in modulating cellular adhesion and migration and thereby helping to mediate all steps of wound healing. In order to seek safe sources of plasma fibronectin for its practical use in wound dressing, we isolated fibronectin from human (homo) and porcine plasma and demonstrated that both have a similar ability as a suitable substrate for the stimulation of cell adhesion and for directing cell migration.

View Article and Find Full Text PDF

The innate immune response is a central process that is activated during pathogenic infection in order to maintain physiological homeostasis. It is well known that dexamethasone (Dex), a synthetic glucocorticoid, is a potent immunosuppressant that inhibits the cytokine production induced by bacterial lipopolysaccharides (LPS). Nevertheless, the extent to which the functional groups of Dex control the excessive activation of inflammatory reactions remains unknown.

View Article and Find Full Text PDF

It is known that ribosomal RNA (rRNA) synthesis is regulated by cellular energy and proliferation status. In this study, we investigated rRNA gene transcription in response to cytoskeletal stress. Our data revealed that the cell shape constrained by isotropic but not elongated micropatterns in HeLa cells led to a significant reduction in rRNA transcription dependent on ROCK.

View Article and Find Full Text PDF

Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK).

View Article and Find Full Text PDF

Dexamethasone, a synthetic glucocorticoid, is often used to induce osteoblast commitment of mesenchymal stem cells (MSCs), and this process requires RhoA-dependent cellular tension. The underlying mechanism is unclear. In this study, we show that dexamethasone stimulates expression of fibronectin and integrin α5 (ITGA5), accompanied by an increase in the interaction of GEF-H1 (also known as ARHGEF2) with Sec5 (also known as EXOC2), a microtubule (MT)-regulated RhoA activator and a component of the exocyst, respectively.

View Article and Find Full Text PDF

Cancer metastasis occurs via a progress involving abnormal cell migration. Cell migration, a dynamic physical process, is controlled by the cytoskeletal system, which includes the dynamics of actin organization and cellular adhesive organelles, focal adhesions (FAs). However, it is not known whether the organization of actin cytoskeletal system has a regulatory role in the physiologically relevant aspects of cancer metastasis.

View Article and Find Full Text PDF

Focal adhesions (FAs) undergo maturation that culminates in size and composition changes that modulate adhesion, cytoskeleton remodeling and differentiation. Although it is well recognized that stimuli for osteogenesis of mesenchymal stem cells (MSCs) drive FA maturation, actin organization and stress fiber polarization, the extent to which FA-mediated signals regulated by the FA protein composition specifies MSC commitment remains largely unknown. Here, we demonstrate that, upon dexamethasone (osteogenic induction) treatment, guanine nucleotide exchange factor H1 (GEF-H1, also known as Rho guanine nucleotide exchange factor 2, encoded by ARHGEF2) is significantly enriched in FAs.

View Article and Find Full Text PDF

Focal adhesions (FAs) are complex plasma membrane-associated macromolecular assemblies that engage with the surrounding extracellular matrix (ECM) via integrin receptors and physically connect with the actin cytoskeleton through the recruitment of numerous FA-associated proteins. FAs undergo a maturation process, which is known to be induced by biochemical or physical cues, to grow and change composition. Varying FA size, distribution, dynamics, and compositions during maturation process is required for transducing the specific signaling networks that reflect the requirements of a cell to sense, adapt, and response to a variety of the environments.

View Article and Find Full Text PDF