Publications by authors named "Jean-Baptiste Trebbia"

Magneto-optical imaging of quantized magnetic flux tubes in superconductors - Abrikosov vortices - is based on Faraday rotation of light polarization within a magneto-optical indicator placed on top of the superconductor. Due to severe aberrations induced by the thick indicator substrate, the spatial resolution of vortices is usually well beyond the optical diffraction limit. Using a high refractive index solid immersion lens placed onto the indicator garnet substrate, we demonstrate wide field optical imaging of single flux quanta in a Niobium film with a resolution better than 600 nm and sub-second acquisition periods, paving the way to high-precision and fast vortex manipulation.

View Article and Find Full Text PDF

Lead halide perovskites open great prospects for optoelectronics and a wealth of potential applications in quantum optical and spin-based technologies. Precise knowledge of the fundamental optical and spin properties of charge-carrier complexes at the origin of their luminescence is crucial in view of the development of these applications. On nearly bulk Cesium-Lead-Bromide single perovskite nanocrystals, which are the test bench materials for next-generation devices as well as theoretical modeling, we perform low temperature magneto-optical spectroscopy to reveal their entire band-edge exciton fine structure and charge-complex binding energies.

View Article and Find Full Text PDF

Cesium lead halide perovskites exhibit outstanding optical and electronic properties for a wide range of applications in optoelectronics and for light-emitting devices. Yet, the physics of the band-edge exciton, whose recombination is at the origin of the photoluminescence, is not elucidated. Here, we unveil the exciton fine structure of individual cesium lead iodide perovskite nanocrystals and demonstrate that it is governed by the electron-hole exchange interaction and nanocrystal shape anisotropy.

View Article and Find Full Text PDF

Superconductors can host quantized magnetic flux tubes surrounded by supercurrents, called Abrikosov vortices. Vortex penetration into a superconducting film is usually limited to its edges and triggered by external magnetic fields or local electrical currents. With a view to novel research directions in quantum computation, the possibility to generate and control single flux quanta in situ is thus challenging.

View Article and Find Full Text PDF

Lead halide perovskites have emerged as promising new semiconductor materials for high-efficiency photovoltaics, light-emitting applications and quantum optical technologies. Their luminescence properties are governed by the formation and radiative recombination of bound electron-hole pairs known as excitons, whose bright or dark character of the ground state remains unknown and debated. While symmetry analysis predicts a singlet non-emissive ground exciton topped with a bright exciton triplet, it has been predicted that the Rashba effect may reverse the bright and dark level ordering.

View Article and Find Full Text PDF

Formamidinium lead iodide (FAPbI) exhibits the narrowest bandgap energy among lead halide perovskites, thus playing a pivotal role for the development of photovoltaics and near-infrared classical or quantum light sources. Here, we unveil the fundamental properties of FAPbI by spectroscopic investigations of nanocrystals of this material at the single-particle level. We show that these nanocrystals deliver near-infrared single photons suitable for quantum communication.

View Article and Find Full Text PDF

As a scanning microscope, STimulated Emission Depletion (STED) nanoscopy needs parallelization for fast wide-field imaging. Using well-designed optical lattices for depletion together with wide-field excitation and a fast camera for detection, we achieve large parallelization of STED nanoscopy. Wide field of view super-resolved images are acquired by scanning over a single unit cell of the optical lattice, which can be as small as 290 nm * 290 nm.

View Article and Find Full Text PDF