Paleoclimate model simulations provide reference data to help interpret the geological record and offer a unique opportunity to evaluate the performance of current models under diverse boundary conditions. Here, we present a dataset of 35 climate model simulations of the warm early Eocene Climatic Optimum (EECO; ~ 50 million years ago) and corresponding preindustrial reference experiments. To streamline the use of the data, we apply standardised naming conventions and quality checks across eight modelling groups that have carried out coordinated simulations as part of the Deep-Time Model Intercomparison Project (DeepMIP).
View Article and Find Full Text PDFRecent studies suggest increasing sensitivity to orbital variations across the Eocene-Oligocene greenhouse to icehouse climate transition. However, climate simulations and paleoenvironmental studies mostly provide snapshots of the past climate, therefore overlooking the role of this short-term variability in driving major environmental changes and possibly biasing model-data comparisons. We address this problem by performing numerical simulations describing the end-members of eccentricity, obliquity, and precession.
View Article and Find Full Text PDFThe first major build-up of Antarctic glaciation occurred in two consecutive stages across the Eocene-Oligocene transition (EOT): the EOT-1 cooling event at ~34.1-33.9 Ma and the Oi-1 glaciation event at ~33.
View Article and Find Full Text PDFIt is generally considered that the perennial glaciation of Greenland lasting several orbital cycles began around 2.7 Ma along with the intensification of Northern Hemisphere glaciation (NHG). Both data and model studies have demonstrated that a decline in atmospheric pCO was instrumental in establishing a perennial Greenland ice sheet (GrIS), yet models have generally used simplistic pCO constraints rather than data-inferred pCO evolution.
View Article and Find Full Text PDFThe historical view of a uniformly warm Cretaceous is being increasingly challenged by the accumulation of new data hinting at the possibility of glacial events, even during the Cenomanian-Turonian (∼95 Myr ago), the warmest interval of the Cretaceous. Here we show that the palaeogeography typifying the Cenomanian-Turonian renders the Earth System resilient to glaciation with no perennial ice accumulation occurring under prescribed CO2 levels as low as 420 p.p.
View Article and Find Full Text PDF