Medical application of siRNAs relies on methods for delivering nucleic acids into the cytosol. Synthetic carriers, which assemble with nucleic acids into delivery systems, show promises for cancer therapy but efficiency remains to be improved. In here, the effectiveness of pyridylthiourea-polyethylenimine (πPEI), a siRNA carrier that favors both polyplex disassembly and endosome rupture upon sensing the acidic endosomal environment, in 3 experimental models of hepatocellular cancer is tested.
View Article and Find Full Text PDFBackground: Melanoma represents one of the most aggressive and therapeutically challenging malignancies as it often gives rise to metastases and develops resistance to classical chemotherapeutic agents. Although diverse therapies have been generated, no major improvement of the patient prognosis has been noticed. One promising alternative to the conventional therapeutic approaches currently available is the inactivation of proteins essential for survival and/or progression of melanomas by means of RNA interference.
View Article and Find Full Text PDFRNA interference allows the design of new inhibitors that target deregulated pathways in cancer. However systemic delivery of siRNA for the treatment of solid tumors still remains an issue. In our study, in order to suppress the progression of lung cancer metastasis in mice, we developed sticky siRNA (ssiRNA) to inhibit survivin and cyclin B1, two candidates involved in cell survival and proliferation.
View Article and Find Full Text PDF