Publications by authors named "Jean-Alexis Hernandez"

Article Synopsis
  • The study investigates the local structure and physical properties of molten silicates under extreme conditions, which are important for understanding planetary evolution.
  • Researchers used advanced techniques like in situ X-ray diffraction and high-power lasers to analyze shock-compressed liquid silicates with varying iron content at extremely high pressures.
  • Findings suggest that the densification of silicate networks continues beyond pressures found in Earth's interior, potentially affecting the formation and differentiation of rocky planets and super-Earths.
View Article and Find Full Text PDF

Laser-driven dynamic compression experiments of plastic materials have found surprisingly fast formation of nanodiamonds (ND) via X-ray probing. This mechanism is relevant for planetary models, but could also open efficient synthesis routes for tailored NDs. We investigate the release mechanics of compressed NDs by molecular dynamics simulation of the isotropic expansion of finite size diamond from different P-T states.

View Article and Find Full Text PDF

Extreme conditions inside ice giants such as Uranus and Neptune can result in peculiar chemistry and structural transitions, e.g., the precipitation of diamonds or superionic water, as so far experimentally observed only for pure C─H and HO systems, respectively.

View Article and Find Full Text PDF

Electrolytes play an important role in the internal structure and dynamics of water-rich satellites and potentially water-rich exoplanets. However, in planets, the presence of a large high-pressure ice mantle is thought to hinder the exchange and transport of electrolytes between various liquid and solid deep layers. Here we show, using first-principles simulations, that up to 2.

View Article and Find Full Text PDF

The energy landscape of the fast-ion conductor BiVO is studied using density functional theory. There are a large number of energy minima, dominated by low-lying thermally accessible configurations in which there are equal numbers of oxygen vacancies in each vanadium-oxygen layer, a range of vanadium coordinations and a large variation in Bi-O and V-O distances. By dividing local minima in the energy landscape into sets of configurations, we then examine diffusion in each different layer using molecular dynamics.

View Article and Find Full Text PDF

We have developed a Python-based open-source package to analyze the results stemming from ab initio molecular-dynamics simulations of fluids. The package is best suited for applications on natural systems, like silicate and oxide melts, water-based fluids, and various supercritical fluids. The package is a collection of Python scripts that include two major libraries dealing with file formats and with crystallography.

View Article and Find Full Text PDF

Lactation and gestation are among the physiological events that trigger the most intense changes in body calcium (Ca) fluxes. Along with the composition of the animal 2021 diet, these events are suspected to impact the Ca isotopic composition of Ca body reservoirs but their dynamics are poorly understood. In this study, we monitored a group of domestic sows across a full reproduction cycle.

View Article and Find Full Text PDF

Properties of liquid silicates under high-pressure and high-temperature conditions are critical for modeling the dynamics and solidification mechanisms of the magma ocean in the early Earth, as well as for constraining entrainment of melts in the mantle and in the present-day core-mantle boundary. Here we present in situ structural measurements by X-ray diffraction of selected amorphous silicates compressed statically in diamond anvil cells (up to 157 GPa at room temperature) or dynamically by laser-generated shock compression (up to 130 GPa and 6,000 K along the MgSiO glass Hugoniot). The X-ray diffraction patterns of silicate glasses and liquids reveal similar characteristics over a wide pressure and temperature range.

View Article and Find Full Text PDF

From first-principles molecular dynamics, we investigate the relation between the superionic proton conduction and the behavior of the O─H⋯O bond (ice VII^{'} to ice X transition) in body-centered-cubic (bcc) H_{2}O ice between 1300 and 2000 K and up to 300 GPa. We bring evidence that there are three distinct phases in the superionic bcc stability field. A first superionic phase characterized by extremely fast diffusion of highly delocalized protons (denoted VII^{''}  hereinafter) is stable at low pressures.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9susst2h5h78dnivqn7v17f37mrb63dl): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once