Synchrotron Microbeam Radiation Therapy (MRT) has repeatedly proven its superiority compared with conventional radiotherapy for glioma control in preclinical research. The clinical transfer phase of MRT has recently gained momentum; seven dogs with suspected glioma were treated under clinical conditions to determine the feasibility and safety of MRT. We administered a single fraction of 3D-conformal, image-guided MRT.
View Article and Find Full Text PDFPurpose: Novel radiation therapy approaches have increased the therapeutic efficacy for malignant brain tumors over the past decades, but the balance between therapeutic gain and radiotoxicity remains a medical hardship. Synchrotron microbeam radiation therapy, an innovative technique, deposes extremely high (peak) doses in micron-wide, parallel microbeam paths, whereas the diffusing interbeam (valley) doses lie in the range of conventional radiation therapy doses. In this study, we evaluated normal tissue toxicity of whole-brain microbeam irradiation (MBI) versus that of a conventional hospital broad beam (hBB).
View Article and Find Full Text PDFPurpose: Synchrotron microbeam radiation therapy (MRT), based on an inhomogeneous geometric and microscopic irradiation pattern of the tissues with high-dose and high-dose-rate x-rays, enhances the permeability of brain tumor vessels. This study attempted to determine the time and size range of the permeability window induced by MRT in the blood-brain (tumor) barrier.
Methods And Materials: Rats-bearing 9L gliomas were exposed to MRT, either unidirectional (tumor dose, 406 Gy) or bidirectional (crossfired) (2 × 203 Gy).
Monoplanar microbeam irradiation (MBI) and pencilbeam irradiation (PBI) are two new concepts of high dose rate radiotherapy, combined with spatial dose fractionation at the micrometre range. In a small animal model, we have explored the concept of integrating MBI or PBI as a simultaneously integrated boost (SIB), either at the beginning or at the end of a conventional, low-dose rate schedule of 5x4 Gy broad beam (BB) whole brain radiotherapy (WBRT). MBI was administered as array of 50 µm wide, quasi-parallel microbeams.
View Article and Find Full Text PDFPurpose: The high potential of microbeam radiation therapy (MRT) in improving tumor control while reducing side effects has been shown by numerous preclinical studies. MRT offers a widened therapeutic window by using the periodical spatial fractionation of synchrotron generated x-rays into an array of intense parallel microbeams. MRT now enters a clinical transfer phase.
View Article and Find Full Text PDFCureus
November 2021
Conventional radiotherapy is a widely used non-invasive form of treatment for many types of cancer. However, due to a low threshold in the lung for radiation-induced normal tissue damage, it is of less utility in treating lung cancer. For this reason, surgery is the preferred treatment for lung cancer, which has the detriment of being highly invasive.
View Article and Find Full Text PDFMicrobeam radiation therapy, an alternative radiosurgical treatment under preclinical investigation, aims to safely treat muzzle tumors in pet animals. This will require data on the largely unknown radiation toxicity of microbeam arrays for bones and teeth. To this end, the muzzle of six young adult New Zealand rabbits was irradiated by a lateral array of microplanar beamlets with peak entrance doses of 200, 330 or 500 Gy.
View Article and Find Full Text PDFPurpose: This study provides the first experimental application of multiscale 3-dimensional (3D) x-ray phase contrast imaging computed tomography (XPCI-CT) virtual histology for the inspection and quantitative assessment of the late-stage effects of radio-induced lesions on lungs in a small animal model.
Methods And Materials: Healthy male Fischer rats were irradiated with x-ray standard broad beams and microbeam radiation therapy, a high-dose rate (14 kGy/s), FLASH spatially fractionated x-ray therapy to avoid beamlet smearing owing to cardiosynchronous movements of the organs during the irradiation. After organ dissection, ex vivo XPCI-CT was applied to all the samples and the results were quantitatively analyzed and correlated to histologic data.
Our goal was the visualizing the vascular damage and acute inflammatory response to micro- and minibeam irradiation in vivo. Microbeam (MRT) and minibeam radiation therapies (MBRT) are tumor treatment approaches of potential clinical relevance, both consisting of parallel X-ray beams and allowing the delivery of thousands of Grays within tumors. We compared the effects of microbeams (25-100 μm wide) and minibeams (200-800 μm wide) on vasculature, inflammation and surrounding tissue changes during zebrafish caudal fin regeneration in vivo.
View Article and Find Full Text PDFOut-of-field effects are of considerable interest in radiotherapy. The mechanisms are poorly understood but are thought to involve signaling processes, which induce responses in non-targeted cells and tissues. The immune response is thought to play a role.
View Article and Find Full Text PDFPurpose: Synchrotron microbeam radiation therapy (MRT) is based on the spatial fractionation of the incident, highly focused synchrotron beam into arrays of parallel microbeams, typically a few tens of microns wide and depositing several hundred grays. This irradiation modality was shown to have a high therapeutic impact on tumors, especially in intracranial locations. However, mechanisms responsible for such a property are not fully understood.
View Article and Find Full Text PDFMicrobeam radiation therapy (MRT) is a new form of preclinical radiotherapy using quasi-parallel arrays of synchrotron X-ray microbeams. While the deposition of several hundred Grays in the microbeam paths, the normal brain tissues presents a high tolerance which is accompanied by the permanence of apparently normal vessels. Conversely, the efficiency of MRT on tumor growth control is thought to be related to a preferential damaging of tumor blood vessels.
View Article and Find Full Text PDFSynchrotron microbeam radiation therapy (MRT) relies on the spatial fractionation of a synchrotron beam into parallel micron-wide beams allowing deposition of hectogray doses. MRT controls the intracranial tumor growth in rodent models while sparing normal brain tissues. Our aim was to identify the early biological processes underlying the differential effect of MRT on tumor and normal brain tissues.
View Article and Find Full Text PDFRadiotherapy has shown some efficacy for epilepsies but the insufficient confinement of the radiation dose to the pathological target reduces its indications. Synchrotron-generated X-rays overcome this limitation and allow the delivery of focalized radiation doses to discrete brain volumes via interlaced arrays of microbeams (IntMRT). Here, we used IntMRT to target brain structures involved in seizure generation in a rat model of absence epilepsy (GAERS).
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
August 2011
Purpose: To explore the effects of microbeam radiation (MR) on vascular biology, we used the chick chorioallantoic membrane (CAM) model of an almost pure vascular system with immature vessels (lacking periendothelial coverage) at Day 8 and mature vessels (with coverage) at Day 12 of development.
Methods And Materials: CAMs were irradiated with microplanar beams (width, ∼25 μm; interbeam spacing, ∼200 μm) at entrance doses of 200 or 300 Gy and, for comparison, with a broad beam (seamless radiation [SLR]), with entrance doses of 5 to 40 Gy.
Results: In vivo monitoring of Day-8 CAM vasculature 6 h after 200 Gy MR revealed a near total destruction of the immature capillary plexus.
The technical feasibility of temporal and spatial fractionations of the radiation dose has been evaluated using synchrotron microbeam radiation therapy for brain tumors in rats. A significant increase in lifespan (216%, p < 0.0001) resulted when three fractions of microbeam irradiation were applied to the tumor through three different ports, orthogonal to each other, at 24 h intervals.
View Article and Find Full Text PDFExperimental modes and pathological conditions may result in bacterial translocation (BT), that is, the passage of indigenous bacteria colonizing the intestine through the intestinal mucosa to mesenteric lymph nodes. Yet no data are available on BT in the normal human gut. We determined the occurrence of BT and its extent in histologically normal, incidentally removed human vermiform appendices (VA) from individuals of different ages and correlated the findings with the development with age of associated lymphatic tissue.
View Article and Find Full Text PDF