Publications by authors named "Jean-Albert Boutin"

The invention of the electron microscope has greatly enhanced the view scientists have of small structural details. Since its implementation, this technology has undergone considerable evolution and the resolution that can be obtained for biological objects has been extended. In addition, the latest generation of cryo-electron microscopes equipped with direct electron detectors and software for the automated collection of images, in combination with the use of advanced image-analysis methods, has dramatically improved the performance of this technique in terms of resolution.

View Article and Find Full Text PDF

Compounds that simultaneously activate peroxisome proliferator-activated receptor (PPAR) subtypes α and γ have the potential to effectively treat dyslipidemia and type 2 diabetes (T2D) in a single pharmaceutically active molecule. The frequently observed side effects of selective PPARγ agonists, such as edema and weight gain, were expected to be overcome by using additive PPARα activity, leading to dual PPARα/γ agonists with balanced activity for both subtypes. Herein we report the discovery, synthesis, and optimization of a new series of α-ethoxyphenylpropionic acid bearing 5- or 6-substituted indoles.

View Article and Find Full Text PDF

A series of N-(2-(5-fluoro-2-(4-fluorophenylthio)benzo[b]thiophen-3-yl)ethyl)acylamides was synthesized and evaluated for binding affinity and intrinsic activity at melatonin receptors. The affinity of each compound for the melatonin receptors was determined by binding studies on cloned human MT1 and MT2 receptors expressed in CHO cells. Agonist and antagonist potency was measured on the [35S]GTPγS binding assay for the most interesting compounds.

View Article and Find Full Text PDF

Naphthalenic analogs of MCA-NAT (5-methoxycarbonylamino-N-acetyltryptamine) have been synthesized and evaluated as melatonin receptor ligands. Introduction of a methoxycarbonylamino substituent at the C-7 position of the naphthalenic nucleus yields MT3 selective ligands. This selectivity can be modulated with suitable variations of the C-7 position and the acyl group on the C-1 side chain.

View Article and Find Full Text PDF

Type-2 diabetes (T2D) is a complex metabolic disease characterized by insulin resistance in the liver and peripheral tissues accompanied by a deficiency in pancreatic beta-cells. Since their discovery, three subtypes of peroxisome proliferator activated receptors have been identified, namely PPARalpha, PPARgamma and PPARbeta/(delta). In this study, we were interested in designing novel PPARgamma selective agonists and/or dual PPARalpha/gamma agonists.

View Article and Find Full Text PDF

Type-2 diabetes (T2D) is a complex metabolic disease characterized by insulin resistance in the liver and peripheral tissues accompanied by a defect in pancreatic beta-cell. Since their discovery three subtypes of Peroxisomes Proliferators Activated Receptors were identified namely PPARalpha, PPARgamma and PPARbeta/(delta). We were interested in designing novel PPARgamma selective agonists and/or dual PPARalpha/gamma agonists.

View Article and Find Full Text PDF

The present study describes the effect of (S)-2,3-dihydro-[3,4]cyclopentano-1,2,4-benzothiadiazine-1,1-dioxide (S18986), a positive allosteric modulator of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors, on (S)-AMPA-mediated increases in brain-derived neurotrophic factor (BDNF) mRNA and protein expression in rat primary cortical neuronal cultures. (S)-AMPA (0.01-300 microM) induced a concentration-dependent increase in BDNF mRNA and protein expression (EC(50)=7 microM) with maximal increases (50-fold) compared to untreated cultures observed between 5 and 12 h, whereas for cellular protein levels, maximal expression was detected at 24 h.

View Article and Find Full Text PDF