Publications by authors named "Jean- Leon Maitre"

During embryonic development, cells shape our body, which is mostly made up of water. It is often forgotten that some of this water is found in intercellular fluid, which, for example, immerses the cells of developing embryos. Intercellular fluid contributes to the properties of tissues and influences cell behaviour, thereby participating in tissue morphogenesis.

View Article and Find Full Text PDF

During preimplantation development, mouse embryos form a fluid-filled lumen. Pressurized fluid fractures cell-cell contacts and accumulates into pockets, which coarsen into a single lumen. How the embryo controls intercellular fluid movement during coarsening is unknown.

View Article and Find Full Text PDF
Forces Shaping the Blastocyst.

Cold Spring Harb Perspect Biol

July 2024

The blastocyst forms during the first days of mammalian development. The structure of the blastocyst is conserved among placental mammals and is paramount to the establishment of the first mammalian lineages. The blastocyst is composed of an extraembryonic epithelium, the trophectoderm (TE), that envelopes a fluid-filled lumen and the inner cell mass (ICM).

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how human embryos undergo compaction, which is crucial for their development, revealing that defects in adhesion lead to compaction failure.
  • Researchers used micropipette aspiration to investigate cell surface tensions during compaction, finding that increased tension at the cell-medium interface is critical for this process, mirroring findings in mouse embryos but showing less efficiency in humans.
  • The research highlights the distinct roles of cell contractility and cell-cell adhesion in embryo compaction, showing that contractility is essential for generating the forces required for the initial morphogenetic movements in human development.
View Article and Find Full Text PDF

Compaction is the first morphogenetic movement of the eutherian mammals and involves a developmentally regulated adhesion process. Previous studies investigated cellular and mechanical aspects of compaction. During mouse and human compaction, cells spread onto each other as a result of a contractility-mediated increase in surface tension pulling at the edges of their cell-cell contacts.

View Article and Find Full Text PDF

At the early stage of tumor progression, fibroblasts are located at the outer edges of the tumor, forming an encasing layer around it. In this work, we have developed a 3D in vitro model where fibroblasts' layout resembles the structure seen in carcinoma in situ. We use a microfluidic encapsulation technology to co-culture fibroblasts and cancer cells within hollow, permeable, and elastic alginate shells.

View Article and Find Full Text PDF

Cell fragmentation is commonly observed in human preimplantation embryos and is associated with poor prognosis during assisted reproductive technology (ART) procedures. However, the mechanisms leading to cell fragmentation remain largely unknown. Here, light sheet microscopy imaging of mouse embryos reveals that inefficient chromosome separation due to spindle defects, caused by dysfunctional molecular motors Myo1c or dynein, leads to fragmentation during mitosis.

View Article and Find Full Text PDF

The oocyte must grow and mature before fertilization, thanks to a close dialogue with the somatic cells that surround it. Part of this communication is through filopodia-like protrusions, called transzonal projections (TZPs), sent by the somatic cells to the oocyte membrane. To investigate the contribution of TZPs to oocyte quality, we impaired their structure by generating a full knockout mouse of the TZP structural component myosin-X (MYO10).

View Article and Find Full Text PDF

Actomyosin contractility is a major engine of preimplantation morphogenesis, which starts at the 8-cell stage during mouse embryonic development. Contractility becomes first visible with the appearance of periodic cortical waves of contraction (PeCoWaCo), which travel around blastomeres in an oscillatory fashion. How contractility of the mouse embryo becomes active remains unknown.

View Article and Find Full Text PDF
Article Synopsis
  • The blastocyst is a key focus in developmental biology due to its critical role in mammalian development and relevance to reproductive technologies.
  • Recent studies are using the blastocyst for mathematical modeling to better understand preimplantation development, particularly in morphogenesis and cell fate specification.
  • Future efforts in theoretical biology aim to integrate mechanical and chemical models to create comprehensive representations of development processes during this crucial phase.
View Article and Find Full Text PDF

During preimplantation development, the human embryo forms the blastocyst, the structure enabling uterine implantation. The blastocyst consists of an epithelial envelope, the trophectoderm, encompassing a fluid-filled lumen, the blastocoel, and a cluster of pluripotent stem cells, the inner cell mass. This specific architecture is crucial for the implantation and further development of the human embryo.

View Article and Find Full Text PDF

During the first days of mammalian development, the embryo forms the blastocyst, the structure responsible for implanting the mammalian embryo. Consisting of an epithelium enveloping the pluripotent inner cell mass and a fluid-filled lumen, the blastocyst results from a series of cleavage divisions, morphogenetic movements, and lineage specification. Recent studies have identified the essential role of actomyosin contractility in driving cytokinesis, morphogenesis, and fate specification, leading to the formation of the blastocyst.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in various scientific fields have reignited interest in how mechanical and biochemical interactions contribute to the organization of cells and tissues.
  • New technologies in microscopy and computational analysis allow for better observation and understanding of patterns related to signaling and force generation in living systems.
  • This roadmap presents diverse case studies exploring the dynamic relationship between mechanics and biochemistry, emphasizing its role in shaping organismal development through various processes across different scales and organisms.
View Article and Find Full Text PDF

During preimplantation development, the mouse embryo forms the blastocyst, which consists of a squamous epithelium enveloping a fluid-filled lumen and a cluster of pluripotent cells. The shaping of the blastocyst into its specific architecture is a prerequisite to implantation and further development of the embryo. Recent studies identified the central role of the actomyosin cortex in generating the forces driving the successive steps of blastocyst morphogenesis.

View Article and Find Full Text PDF

Metastasis is the main cause of cancer-related deaths. How a single oncogenic cell evolves within highly organized epithelium is still unknown. Here, we found that the overexpression of the protein kinase atypical protein kinase C ι (aPKCi), an oncogene, triggers basally oriented epithelial cell extrusion in vivo as a potential mechanism for early breast tumor cell invasion.

View Article and Find Full Text PDF

During development, embryos perform a mesmerizing choreography, which is crucial for the correct shaping, positioning and function of all organs. The cellular properties powering animal morphogenesis have been the focus of much attention. In contrast, much less consideration has been given to the invisible engine constituted by the intercellular fluid.

View Article and Find Full Text PDF

During mouse pre-implantation development, the formation of the blastocoel, a fluid-filled lumen, breaks the radial symmetry of the blastocyst. The factors that control the formation and positioning of this basolateral lumen remain obscure. We found that accumulation of pressurized fluid fractures cell-cell contacts into hundreds of micrometer-size lumens.

View Article and Find Full Text PDF

During the very first days of mammalian development, the embryo forms a structure called the blastocyst. The blastocyst consists of two cell types: the trophectoderm (TE), which implants the embryo in the uterus and the inner cell mass (ICM), which gives rise to all cells of the mammalian body. Previous works identified how cells differentiate according to their position within the embryo: TE for surface cells and ICM for internal cells.

View Article and Find Full Text PDF

During pre-implantation development, the mammalian zygote transforms into the blastocyst, the structure that will implant the embryo in the maternal uterus. Consisting of a squamous epithelium enveloping a fluid-filled cavity and the inner cell mass, the blastocyst is sculpted by a succession of morphogenetic events. These deformations result from the changes in the forces and mechanical properties of the tissue composing the embryo.

View Article and Find Full Text PDF

The segregation of different cell types into distinct tissues is a fundamental process in metazoan development. Differences in cell adhesion and cortex tension are commonly thought to drive cell sorting by regulating tissue surface tension (TST). However, the role that differential TST plays in cell segregation within the developing embryo is as yet unclear.

View Article and Find Full Text PDF