Publications by authors named "Jean de Vellis"

Progress in addressing the origins of intellectual and developmental disabilities accelerated with the establishment 50 years ago of the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health and associated Intellectual and Developmental Disabilities Research Centers. Investigators at these Centers have made seminal contributions to understanding human brain and behavioral development and defining mechanisms and treatments of disorders of the developing brain. ANN NEUROL 2019;86:332-343.

View Article and Find Full Text PDF

Here we document three highly reproducible protocols: (1) a culture system for the derivation of human oligodendrocytes (OLs) from human induced pluripotent stem cells (hiPS) and their further maturation-our protocol generates viral- and integration-free OLs that efficiently commit and move forward in the OL lineage, recapitulating all the steps known to occur during in vivo development; (2) a method for the isolation, propagation and maintenance of neural stem cells (NSCs); and (3) a protocol for the production, isolation, and maintenance of OLs from perinatal rodent and human brain-derived NSCs. Our unique culture systems rely on a series of chemically defined media, specifically designed and carefully characterized for each developmental stage of OL as they advance from OL progenitors to mature, myelinating cells. We are confident that these protocols bring our field a step closer to efficient autologous cell replacement therapies and disease modeling.

View Article and Find Full Text PDF

The primary energy sources of mammalian cells are proteins, fats, and sugars that are processed by well-known biochemical mechanisms that have been discovered and studied in 1G (terrestrial gravity). Here we sought to determine how simulated microgravity (sim-µG) impacts both energy and lipid metabolism in oligodendrocytes (OLs), the myelin-forming cells in the central nervous system. We report increased mitochondrial respiration and increased glycolysis 24 hr after exposure to sim-µG.

View Article and Find Full Text PDF

Here we document three highly reproducible protocols: (1) a culture system for the derivation of human oligodendrocytes (OLs) from human induced pluripotent stem cells (hiPS) and their further maturation-our protocol generates viral- and integration-free OLs that efficiently commit and move forward in the OL lineage, recapitulating all the steps known to occur during in vivo development; (2) a method for the isolation, propagation and maintenance of neural stem cells (NSCs); and (3) a protocol for the production, isolation, and maintenance of OLs from perinatal rodent and human brain-derived NSCs. Our unique culture systems rely on a series of chemically defined media, specifically designed and carefully characterized for each developmental stage of OL as they advance from OL progenitors to mature, myelinating cells. We are confident that these protocols bring our field a step closer to efficient autologous cell replacement therapies and disease modeling.

View Article and Find Full Text PDF

Trophic factor treatment has been shown to improve the recovery of brain and spinal cord injury (SCI). In this study, we examined the effects of TSC1 (a combination of insulin-like growth factor 1 and transferrin) 4 and 8 h after SCI at the thoracic segment level (T12) in nestin-GFP transgenic mice. TSC1 treatment for 4 and 8 h increased the number of nestin-expressing cells around the lesion site and prevented Wallerian degeneration.

View Article and Find Full Text PDF

The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors.

View Article and Find Full Text PDF

The studies on the exact lineage composition of NG2 expressing progenitors in the forebrain have been controversial. A number of studies have revealed the heterogeneous nature of postnatal NG2 cells. However, NG2 cells found in embryonic dates are far less understood.

View Article and Find Full Text PDF

The initial impact of spinal cord injury (SCI) often results in inflammation leading to irreversible damage with consequent loss of locomotor function. Minimal recovery is achieved once permanent damage has occurred. Using a mouse model of SCI we observed a transitory increase followed by a rapid decline in gene expression and protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of cellular anti-oxidative genes.

View Article and Find Full Text PDF

We have recently established a culture system to study the impact of simulated microgravity on oligodendrocyte progenitor cells (OPCs) development. We subjected mouse and human OPCs to a short exposure of simulated microgravity produced by a 3D-Clinostat robot. Our results demonstrate that rodent and human OPCs display enhanced and sustained proliferation when exposed to simulated microgravity as assessed by several parameters, including a decrease in the cell cycle time.

View Article and Find Full Text PDF

Injury to the spinal cord disrupts ascending and descending axonal pathways and causes tissue damage with a subsequent limited cellular regeneration. Successful treatment would encompass the restoration of the cytoarchitecture, homeostasis and function all in dear need. Transplantation-based treatments using exogenous cells are the most favoured approach.

View Article and Find Full Text PDF

Periventricular leukomalacia (PVL) is the most frequent cause of cerebral palsy and other intellectual disabilities, and currently there is no treatment. In PVL, glutamate excitotoxicity (GME) leads to abnormal oligodendrocytes (OLs), myelin deficiency, and ventriculomegaly. We have previously identified that the combination of transferrin and insulin growth factors (TSC1) promotes endogenous OL regeneration and remyelination in the postnatal and adult rodent brain.

View Article and Find Full Text PDF

Objective: Pathological findings in neonatal brain injury associated with preterm birth include focal and/or diffuse white matter injury (WMI). Despite the heterogeneous nature of this condition, reactive astrogliosis and microgliosis are frequently observed. Thus, molecular mechanisms by which glia activation contribute to WMI were investigated.

View Article and Find Full Text PDF

We describe a method to prepare postnatal rat brain primary cell cultures composed of astrocytes, oligodendrocytes, and microglia. After 1 week in vitro, the mixed glial cell cultures are free of neurons, meningeal cells and fibroblasts. We developed a simple procedure to selectively harvest enriched populations of each of the three major glial cell types.

View Article and Find Full Text PDF

Studies in humans and animal models link maternal infection and imbalanced levels of inflammatory mediators in the foetal brain to the aetiology of neuropsychiatric disorders. In a number of animal models, it was shown that exposure to viral or bacterial agents during a period that corresponds to the second trimester in human gestation triggers brain and behavioural abnormalities in the offspring. However, little is known about the early cellular and molecular events elicited by inflammation in the foetal brain shortly after maternal infection has occurred.

View Article and Find Full Text PDF

Canavan disease (CD) is a neurodegenerative disease, caused by a deficiency in the enzyme aspartoacylase (ASPA). This enzyme has been localized to oligodendrocytes; however, it is still undefined how ASPA deficiency affects oligodendrocyte development. In normal mice the pattern of ASPA expression coincides with oligodendrocyte maturation.

View Article and Find Full Text PDF

Loss of the oligodendrocyte (OL)-specific enzyme aspartoacylase (ASPA) from gene mutation results in the sponginess and loss of white matter (WM) in Canavan disease (CD). This study addresses the fate of OLs during the pathophysiology of CD in an adult ASPA knockout (KO) mouse strain. Massive arrays of neural stem/progenitor cells, immunopositive for PSA-NCAM, nestin, vimentin, and NG2, were observed within the severely affected spongy WM of the KO mouse brain.

View Article and Find Full Text PDF

Here we document protocols for the production, isolation, and maintenance of the oligodendrocyte phenotype from rodent and human neural stem cells. Our unique method relies on a series of chemically defined media, specifically designed and carefully characterized for each developmental stage of oligodendrocytes as they advance from oligodendrocyte progenitors to mature, myelinating oligodendrocytes.

View Article and Find Full Text PDF

Human neurological disorders such as Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis (ALS), Alzheimer's disease, multiple sclerosis (MS), stroke, and spinal cord injury are caused by a loss of neurons and glial cells in the brain or spinal cord. Cell replacement therapy and gene transfer to the diseased or injured brain have provided the basis for the development of potentially powerful new therapeutic strategies for a broad spectrum of human neurological diseases. However, the paucity of suitable cell types for cell replacement therapy in patients suffering from neurological disorders has hampered the development of this promising therapeutic approach.

View Article and Find Full Text PDF

Neuronal accumulation of oligomeric amyloid-beta (Alphabeta) is considered the proximal cause of neuronal demise in Alzheimer disease (AD) patients. Blood-borne macrophages might reduce Abeta stress to neurons by immigration into the brain and phagocytosis of Alphabeta. We tested migration and export across a blood-brain barrier model, and phagocytosis and clearance of Alphabeta by AD and normal subjects' macrophages.

View Article and Find Full Text PDF

Objective: To investigate the effect and molecular mechanism of Tiantai No.1, a compound Chinese herbal preparation, for the prevention and reduction of neurotoxicity induced by beta-amyloid peptides (Abeta) in vitro and its effects on nuclear factor-kappa B (NF-kappa B) and cAMP responsive element-binding protein (CREB) pathways using the gene transfection technique.

Methods: B104 neuronal cells were used to examine the effects of Tiantai No.

View Article and Find Full Text PDF

In vivo remyelination promoted by a combination of four oligodendrocyte specific growth factors (GFs) in cuprizone-induced demyelinated mice brains was described recently by our group. Here we report activation of inflammatory response in mice brain following cuprizone-induced demyelination and its further enhancement immediately after injection of growth factors in vivo, while no significant inflammatory response was evident in GFs-injected normal brains. Cuprizone-induced demyelination was accompanied by increased expression of inflammatory cytokines, TNFalpha and IL-1beta, anti-inflammatory cytokines TGFbeta, IL-10 and increased levels of chemokines, CCL2, CCL5, and CXCL10, produced by resident microglia and astrocytes.

View Article and Find Full Text PDF

Oligodendrogliopathy, microglial infiltration, and lack of remyelination are detected in the brains of patients with multiple sclerosis and are accompanied by high levels of the transcription factor p53. In this study, we used the cuprizone model of demyelination, characterized by oligodendrogliopathy and microglial infiltration, to define the effect of p53 inhibition. Myelin preservation, decreased microglial recruitment, and gene expression were observed in mice lacking p53 or receiving systemic administration of the p53 inhibitor pifithrin-alpha, compared with untreated controls.

View Article and Find Full Text PDF

Oligodendrocytes develop from oligodendrocyte progenitor cells (OPCs), which in turn arise from a subset of neuroepithelial precursor cells during midneurogenesis. Development of the oligodendrocyte lineage involves a plethora of cell-intrinsic and -extrinsic signals. A cell surface calcium-sensing receptor (CaR) has been shown to be functionally expressed in immature oligodendrocytes.

View Article and Find Full Text PDF