Individual retinal cell types exhibit semi-regular spatial patterns called retinal mosaics. Retinal ganglion cells (RGCs) and starburst amacrine cells (SACs) are known to exhibit such layouts. Mechanisms responsible for the formation of mosaics are not well understood but follow three main principles: (i) homotypic cells prevent nearby cells from adopting the same type, (ii) cell tangential migration and (iii) cell death.
View Article and Find Full Text PDFMotivation: Agent-based modeling is an indispensable tool for studying complex biological systems. However, existing simulation platforms do not always take full advantage of modern hardware and often have a field-specific software design.
Results: We present a novel simulation platform called BioDynaMo that alleviates both of these problems.
This paper develops a three-dimensional in silico hybrid model of cancer, which describes the multi-variate phenotypic behaviour of tumour and host cells. The model encompasses the role of cell migration and adhesion, the influence of the extracellular matrix, the effects of oxygen and nutrient availability, and the signalling triggered by chemical cues and growth factors. The proposed in silico hybrid modelling framework combines successfully the advantages of continuum-based and discrete methods, namely the finite element and agent-based method respectively.
View Article and Find Full Text PDF