Publications by authors named "Jean Zhao"

Purpose: Resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) is a clinical challenge in estrogen receptor (ER)-positive (ER+) breast cancer. Cyclin-dependent kinase 7 (CDK7) is a candidate target in endocrine-resistant ER+ breast cancer models and selective CDK7 inhibitors (CDK7i) are in clinical development for the treatment of ER+ breast cancer. Nonetheless, the precise mechanisms responsible for the activity of CDK7i in ER+ breast cancer remain elusive.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is an aggressive hematological malignancy originating from transformed hematopoietic stem or progenitor cells. AML prognosis remains poor owing to resistance and relapse driven by leukemia stem cells (LSCs). Targeting molecules essential for LSC function is a promising therapeutic approach.

View Article and Find Full Text PDF
Article Synopsis
  • * A new algorithm called OM2BFB was developed to effectively detect BFB amplifications using optical genome maps, achieving high accuracy and recall in identifying these events across various cancer models.
  • * BFB amplification tends to occur more in certain cancers (like cervical and lung) and results in lower variability in gene expression compared to ecDNA amplifications, which may indicate different patterns of treatment resistance and offer
View Article and Find Full Text PDF

Vitamin C (vitC) is a vital nutrient for health and also used as a therapeutic agent in diseases such as cancer. However, the mechanisms underlying vitC's effects remain elusive. Here we report that vitC directly modifies lysine without enzymes to form vitcyl-lysine, termed "vitcylation", in a dose-, pH-, and sequence-dependent manner across diverse proteins in cells.

View Article and Find Full Text PDF

Loss of the PTEN tumour suppressor is one of the most common oncogenic drivers across all cancer types. PTEN is the major negative regulator of PI3K signalling. The PI3Kβ isoform has been shown to play an important role in PTEN-deficient tumours, but the mechanisms underlying the importance of PI3Kβ activity remain elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Lactate is found in high levels in rapidly dividing cells due to increased glucose breakdown needed for cell growth, but its impact on cell proliferation was unclear.
  • Research revealed that accumulated lactate alters the anaphase promoting complex (APC/C) by inhibiting the SUMO protease SENP1, which affects protein regulation during the cell cycle.
  • This mechanism allows lactate to signal the cell to proceed with division during nutrient-rich conditions, but excessive lactate can lead to faulty APC/C regulation and resistance to anti-mitotic treatments.
View Article and Find Full Text PDF

Introduction: Despite the impressive clinical response rate of osimertinib, a third-generation EGFR-TKI, as a frontline treatment for patients with EGFR-mutant non-small-cell lung cancer (NSCLC) or as a salvage therapy for patients with T790M mutation, resistance to osimertinib is common in the clinic. The mechanisms underlying osimertinib resistance are heterogenous. While genetic mutations within EGFR or other cancer driver pathways mediated mechanisms are well-documented, the role of tumor cell and tumor immune microenvironment in mediating the response to osimertinib remains elusive.

View Article and Find Full Text PDF

3'-Phosphoinositides are ubiquitous cellular lipids that play pivotal regulatory roles in health and disease. Generation of 3'-phosphoinositides are driven by three families of phosphoinositide 3-kinases (PI3K) but the mechanisms underlying their regulation and cross-talk are not fully understood. Among 3'-phosphoinositides, phosphatidylinositol-3,5-bisphosphate (PI(3,5)P ) remains the least understood species in terms of its spatiotemporal dynamics and physiological function due to the lack of specific probes.

View Article and Find Full Text PDF

Background: Poly (ADP-ribose) polymerase (PARP) inhibition (PARPi) has demonstrated potent therapeutic efficacy in patients with BRCA-mutant ovarian cancer. However, acquired resistance to PARPi remains a major challenge in the clinic.

Methods: PARPi-resistant ovarian cancer mouse models were generated by long-term treatment of olaparib in syngeneic Brca1-deficient ovarian tumors.

View Article and Find Full Text PDF

Purpose: Brain metastases can occur in up to 50% of patients with metastatic HER2-positive breast cancer. Because patients with active brain metastases were excluded from previous pivotal clinical trials, the central nervous system (CNS) activity of the antibody-drug conjugate trastuzumab deruxtecan (T-DXd) is not well characterized.

Experimental Design: We studied how T-DXd affects growth and overall survival in orthotopic patient-derived xenografts (PDX) of HER2-positive and HER2-low breast cancer brain metastases (BCBM).

View Article and Find Full Text PDF

The mutant form of the guanosine triphosphatase (GTPase) KRAS is a key driver in human tumors but remains a challenging therapeutic target, making cancers a highly unmet clinical need. Here, we report a class of bottlebrush polyethylene glycol (PEG)-conjugated antisense oligonucleotides (ASOs) for potent in vivo KRAS depletion. Owing to their highly branched architecture, these molecular nanoconstructs suppress nearly all side effects associated with DNA-protein interactions and substantially enhance the pharmacological properties of the ASO, such as plasma pharmacokinetics and tumor uptake.

View Article and Find Full Text PDF

PARP inhibitors (PARPi) have drastically changed the treatment landscape of advanced ovarian tumors with BRCA mutations. However, the impact of this class of inhibitors in patients with advanced BRCA-mutant breast cancer is relatively modest. Using a syngeneic genetically-engineered mouse model of breast tumor driven by Brca1 deficiency, we show that tumor-associated macrophages (TAMs) blunt PARPi efficacy both in vivo and in vitro.

View Article and Find Full Text PDF

Nucleic-acid-based immune adjuvants have been extensively investigated for the design of cancer vaccines. However, nucleic acids often require the assistance of a carrier system to improve cellular uptake. Yet, such systems are prone to carrier-associated adaptive immunity, leading to difficulties in a multidose treatment regimen.

View Article and Find Full Text PDF

Cyclin-dependent kinase 4 (CDK4) and CDK6 are critical mediators of cellular transition into S phase and are important for the initiation, growth and survival of many cancer types. Pharmacological inhibitors of CDK4/6 have rapidly become a new standard of care for patients with advanced hormone receptor-positive breast cancer. As expected, CDK4/6 inhibitors arrest sensitive tumour cells in the G1 phase of the cell cycle.

View Article and Find Full Text PDF

Approximately 50% of patients with metastatic HER2-positive (HER2+) breast cancer develop brain metastases (BCBMs). We report that the tumor suppressor p16 is deficient in the majority of HER2+ BCBMs. p16-deficiency as measured by protein immunohistochemistry predicted response to combined tucatinib and abemaciclib in orthotopic patient-derived xenografts (PDXs) of HER2 + BCBMs.

View Article and Find Full Text PDF

Protein fatty acylation regulates numerous cell signaling pathways. Polyunsaturated fatty acids (PUFAs) exert a plethora of physiological effects, including cell signaling regulation, with underlying mechanisms to be fully understood. Herein, we report that docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) regulate PI3K-AKT signaling by modifying PDK1 and AKT2.

View Article and Find Full Text PDF

Proliferation is a fundamental trait of cancer cells, but its properties and spatial organization in tumours are poorly characterized. Here we use highly multiplexed tissue imaging to perform single-cell quantification of cell cycle regulators and then develop robust, multivariate, proliferation metrics. Across diverse cancers, proliferative architecture is organized at two spatial scales: large domains, and smaller niches enriched for specific immune lineages.

View Article and Find Full Text PDF

Unlabelled: A common outcome of androgen deprivation in prostate cancer therapy is disease relapse and progression to castration-resistant prostate cancer (CRPC) via multiple mechanisms. To gain insight into the recent clinical findings that highlighted genomic alterations leading to hyperactivation of PI3K, we examined the roles of the commonly expressed p110 catalytic isoforms of PI3K in a murine model of Pten-null invasive CRPC. While blocking p110α had negligible effects in the development of Pten-null invasive CRPC, either genetic or pharmacologic perturbation of p110β dramatically slowed CRPC initiation and progression.

View Article and Find Full Text PDF

Cancer patients frequently develop chemotherapy-induced peripheral neuropathy (CIPN), a painful and long-lasting disorder with profound somatosensory deficits. There are no effective therapies to prevent or treat this disorder. Pathologically, CIPN is characterized by a "dying-back" axonopathy that begins at intra-epidermal nerve terminals of sensory neurons and progresses in a retrograde fashion.

View Article and Find Full Text PDF

Therapeutic resistance to targeted therapies by tumor cells is a common and serious problem in the clinic. Increased understanding of the molecular mechanisms that underly resistance is necessary for the rational design and improvement of effective pharmacologic treatment strategies. The landmark study by O'Reilly and colleagues published in in 2006 provided valuable insights into nongenomic adaptive rewiring and compensatory mechanisms responsible for mediating resistance to targeted inhibition of the PI3K-AKT-mTOR pathway, and how tumor cells regulate signaling pathways via negative feedback loops.

View Article and Find Full Text PDF

Enhanced signaling via RTKs in pulmonary hypertension (PH) impedes current treatment options because it perpetuates proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs). Here, we demonstrated hyperphosphorylation of multiple RTKs in diseased human vessels and increased activation of their common downstream effector phosphatidylinositol 3'-kinase (PI3K), which thus emerged as an attractive therapeutic target. Systematic characterization of class IA catalytic PI3K isoforms identified p110α as the key regulator of pathogenic signaling pathways and PASMC responses (proliferation, migration, survival) downstream of multiple RTKs.

View Article and Find Full Text PDF

The patterning of epithelial buds is determined by the underlying signaling network. Here, we study the cross-talk between phosphoinositide 3-kinase (PI3K) and Ras signaling during lacrimal gland budding morphogenesis. Our results show that PI3K is activated by both the p85-mediated insulin-like growth factor (IGF) and Ras-mediated fibroblast growth factor (FGF) signaling.

View Article and Find Full Text PDF

Pharmacologic inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) were designed to induce cancer cell cycle arrest. Recent studies have suggested that these agents also exert other effects, influencing cancer cell immunogenicity, apoptotic responses, and differentiation. Using cell-based and mouse models of breast cancer together with clinical specimens, we show that CDK4/6 inhibitors induce remodeling of cancer cell chromatin characterized by widespread enhancer activation, and that this explains many of these effects.

View Article and Find Full Text PDF