Publications by authors named "Jean Valmier"

Navigating the duality of opioids' potent analgesia and side effects, including tolerance and hyperalgesia, is a significant challenge in chronic pain management, often prompting hazardous dose escalation to maintain analgesic effects. The peripheral mu-opioid receptor (MOR) is known to mediate these contradictory effects. Here, we show that the fms-like tyrosine kinase receptor 3 (FLT3) in peripheral somatosensory neurons drives morphine tolerance and hyperalgesia in a male rodent model.

View Article and Find Full Text PDF

Acute pain has been associated with persistent pain sensitization of nociceptive pathways increasing the risk of transition from acute to chronic pain. We demonstrated the critical role of the FLT3- tyrosine kinase receptor, expressed in sensory neurons, in pain chronification after peripheral nerve injury. However, it is unclear whether injury-induced pain sensitization can also promote long-term mood disorders.

View Article and Find Full Text PDF

Inhibiting receptor tyrosine kinases is commonly achieved by two main strategies targeting either the intracellular kinase domain by low molecular weight compounds or the extracellular ligand-binding domain by monoclonal antibodies. Identifying small molecules able to inhibit RTKs at the extracellular level would be highly desirable to gain exquisite selectivity but is believed to be challenging owing to the size of RTK endogenous ligands (cytokines, growth factors) and the topology of RTK extracellular domains. We here report the high-throughput screening of the French Chemical Library (48K compounds) for extracellular inhibitors of the Fms-like tyrosine kinase 3 (FLT3) receptor tyrosine kinase, by a homogeneous time-resolved fluorescence competition assay.

View Article and Find Full Text PDF

Background: Photobiomodulation is widely studied for its potential benefits in the wound healing process. Numerous scientific studies have highlighted its effect on various phases of wound repair, but clinical validations are few. This comparative trial aims to evaluate the influence of photobiomodulation on the post-abdominoplasty healing process.

View Article and Find Full Text PDF

Peripheral neuropathic pain (PNP) is a debilitating and intractable chronic disease, for which sensitization of somatosensory neurons present in dorsal root ganglia that project to the dorsal spinal cord is a key physiopathological process. Here, we show that hematopoietic cells present at the nerve injury site express the cytokine FL, the ligand of fms-like tyrosine kinase 3 receptor (FLT3). FLT3 activation by intra-sciatic nerve injection of FL is sufficient to produce pain hypersensitivity, activate PNP-associated gene expression and generate short-term and long-term sensitization of sensory neurons.

View Article and Find Full Text PDF

This work focuses on the optical stimulation of dorsal root ganglion (DRG) neurons through infrared laser light stimulation. We show that a few millisecond laser pulse at 1875 nm induces a membrane depolarization, which was observed by the patch-clamp technique. This stimulation led to action potentials firing on a minority of neurons beyond an energy threshold.

View Article and Find Full Text PDF

Although cardio-vascular incidents and sudden cardiac death (SCD) are among the leading causes of premature death in the general population, the origins remain unidentified in many cases. Genome-wide association studies have identified Meis1 as a risk factor for SCD. We report that Meis1 inactivation in the mouse neural crest leads to an altered sympatho-vagal regulation of cardiac rhythmicity in adults characterized by a chronotropic incompetence and cardiac conduction defects, thus increasing the susceptibility to SCD.

View Article and Find Full Text PDF

Dorsal root ganglia (DRG) sensory neurons arise from heterogeneous precursors that differentiate in two neurogenic waves, respectively controlled by Neurog2 and Neurog1. We show here that transgenic mice expressing a Zeb1/2 dominant-negative form (DBZEB) exhibit reduced numbers of nociceptors and altered pain sensitivity. This reflects an early impairment of Neurog1-dependent neurogenesis due to the depletion of specific sensory precursor pools, which is slightly later partially compensated by the contribution of boundary cap cells (BCCs).

View Article and Find Full Text PDF

The effect of a 645 nm Light Emitting Diode (LED) light irradiation on the neurite growth velocity of adult Dorsal Root Ganglion (DRG) neurons with peripheral axon injury 4-10 days before plating and without previous injury was investigated. The real amount of light reaching the neurons was calculated by taking into account the optical characteristics of the light source and of media in the light path. The knowledge of these parameters is essential to be able to compare results of the literature and a way to reduce inconsistencies.

View Article and Find Full Text PDF

Neurons innervating peripheral tissues display complex responses to peripheral nerve injury. These include the activation and suppression of a variety of signalling pathways that together influence regenerative growth and result in more or less successful functional recovery. However, these responses can be offset by pathological consequences including neuropathic pain.

View Article and Find Full Text PDF

A receptor-ligand interaction can evoke a broad range of biological activities in different cell types depending on receptor identity and cell type-specific post-receptor signaling intermediates. Here, we show that the TNF family member LIGHT, known to act as a death-triggering factor in motoneurons through LT-βR, can also promote axon outgrowth and branching in motoneurons through the same receptor. LIGHT-induced axonal elongation and branching require ERK and caspase-9 pathways.

View Article and Find Full Text PDF

Background: The improvement of axonal regeneration is a major objective in the treatment of peripheral nerve injuries. The aim of this study was to evaluate the effects of electro-acupuncture on the functional recovery of sensorimotor responses following left sciatic nerve crush in mice.

Methods: Sciatic nerve crush was performed on seven week old female mice.

View Article and Find Full Text PDF

Dorsal root ganglia (DRGs) contain the cell bodies of sensory neurons which relay nociceptive, thermoceptive, mechanoceptive and proprioceptive information from peripheral tissues toward the central nervous system. These neurons establish constant communication with their targets which insures correct maturation and functioning of the somato-sensory nervous system. Interfering with this two-way communication leads to cellular, electrophysiological and molecular modifications that can eventually cause neuropathic conditions.

View Article and Find Full Text PDF

The T-type Ca2+ channel Cav3.2 is expressed in nociceptive and mechanosensitive sensory neurons. The mechanosensitive D-hair (down-hair) neurons, which innervate hair follicles, are characterized by a large-amplitude Cav3.

View Article and Find Full Text PDF

Low-threshold mechanoreceptor neurons (LTMs) of the dorsal root ganglia (DRG) are essential for touch sensation. They form highly specialized terminations in the skin and display stereotyped projections in the spinal cord. Functionally defined LTMs depend on neurotrophin signaling for their postnatal survival and functioning, but how these neurons arise during development is unknown.

View Article and Find Full Text PDF

In humans and rodents the adult spinal cord harbors neural stem cells located around the central canal. Their identity, precise location, and specific signaling are still ill-defined and controversial. We report here on a detailed analysis of this niche.

View Article and Find Full Text PDF

In Drosophila subperineurial glia (SPG) ensheath and insulate the nerve. SPG is under strict cell cycle and survival control because cell division or death of such a cell type would compromise the integrity of the blood-nerve barrier. The mechanisms underlying the survival of SPG remain unknown.

View Article and Find Full Text PDF

We investigated the molecular determinants of Ca(2+)-activated chloride current (CaCC) expressed in adult sensory neurons after a nerve injury. Dorsal root ganglia express the transcripts of three gene families known to induce CaCCs in heterologous systems: bestrophin, tweety, and TMEM16. We found with quantitative transcriptional analysis and in situ hybridization that nerve injury induced upregulation of solely bestrophin-1 transcripts in sensory neurons.

View Article and Find Full Text PDF

Mutations of Ca(2+)-activated proteases (calpains) cause muscular dystrophies. Nevertheless, the specific role of calpains in Ca(2+) signalling during the onset of dystrophies remains unclear. We investigated Ca(2+) handling in skeletal cells from calpain 3-deficient mice.

View Article and Find Full Text PDF

RNA interference appears as a technique of choice to identify gene candidate or to evaluate gene function. To date, a main problem is to achieve high transfection efficiencies on native cells such as adult neurons. In addition, transfection on organ or mass culture does not allow to approach the cellular diversity.

View Article and Find Full Text PDF

Dorsal root ganglia (DRG) neurons exhibit a wide molecular heterogeneity in relation to the various sensory modalities (mechanoception, thermoception, nociception) that they subserve. Finding markers of subpopulations is an important step in understanding how these neurons convey specific information. We identified fibroblast growth factor homologous factor 1 (FHF1) in a search for markers of subpopulations of DRG neurons.

View Article and Find Full Text PDF

Background: The different sensory modalities temperature, pain, touch and muscle proprioception are carried by somatosensory neurons of the dorsal root ganglia. Study of this system is hampered by the lack of molecular markers for many of these neuronal sub-types. In order to detect genes expressed in sub-populations of somatosensory neurons, gene profiling was carried out on wild-type and TrkA mutant neonatal dorsal root ganglia (DRG) using SAGE (serial analysis of gene expression) methodology.

View Article and Find Full Text PDF
Article Synopsis
  • A calcium-activated chloride current (IClCa) is present in medium-sized sensory neurons of the dorsal root ganglion (DRG) and increases after sciatic nerve injury.
  • Researchers used RT-PCR to study the gene expression of potential IClCa-inducing molecules in the DRG.
  • Results indicate mBest1 and Tweety2 genes as strong candidates for contributing to the injury-induced IClCa in DRG neurons.
View Article and Find Full Text PDF

In addition to its inhibitory action, reports have shown that, in sensory neurons, GABA can be responsible for excitatory effects leading to painful behavior. The cellular mechanisms for these excitatory effects remain largely unknown. Although the high intracellular chloride concentration allows GABA(A) receptor activation to depolarize all adult sensory neurons, we show that GABA, acting through GABA(A) receptors, can generate, in vitro, action potential and intracellular Ca(2+) increase only in a subset of neurons expressing a prominent T-type Ca(2+) current.

View Article and Find Full Text PDF