Innate lymphoid cells (ILCs) are a heterogeneous population of lymphocytes that coordinate early immune responses and maintain tissue homeostasis. Type 1 innate immune responses are mediated by natural killer (NK) cells and group 1 ILCs (ILC1s). Despite their shared features, NK cells and ILC1s display profound differences among various tissue microenvironments.
View Article and Find Full Text PDFMental traumatization is associated with long-bone growth retardation, osteoporosis and increased fracture risk. We revealed earlier that mental trauma disturbs cartilage-to-bone transition during bone growth and repair in mice. Trauma increased tyrosine hydroxylase-expressing neutrophils in bone marrow and fracture callus.
View Article and Find Full Text PDFWe previously demonstrated that mice with targeted deletion of the leucine repeat rich kinase 1 () gene were osteopetrotic due to the failure of osteoclasts to resorb bone. To determine how LRRK1 regulates osteoclast activity, we examined the intracellular and extracellular acidification with an acidotropic probe, acridine orange, in live osteoclasts on bone slices. We examined lysosome distribution in osteoclasts by localization of LAMP-2, cathepsin K, and v-ATPase by immunofluorescent staining with specific antibodies.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
October 2022
Catecholamine signaling is known to influence bone tissue as reuptake of norepinephrine released from sympathetic nerves into bone cells declines with age leading to osteoporosis. Further, β-adrenoceptor-blockers like propranolol provoke osteoprotective effects in osteoporotic patients. However, besides systemic adrenal and sympathetic catecholamine production, it is also known that myeloid cells can synthesize catecholamines, especially under inflammatory conditions.
View Article and Find Full Text PDFAutosomal recessive osteopetroses (ARO) are rare genetic skeletal disorders of high clinical and molecular heterogeneity with an estimated frequency of 1:250,000 worldwide. The manifestations are diverse and although individually rare, the various forms contribute to the prevalence of a significant number of affected individuals with considerable morbidity and mortality. Among the ARO classification, the most severe form is the autosomal recessive-5 (OPTB5) osteopetrosis (OMIM 259720) that results from homozygous mutation in the OSTM1 gene (607649).
View Article and Find Full Text PDFLysosome membranes contain diverse phosphoinositide (PtdIns) lipids that coordinate lysosome function and dynamics. The PtdIns repertoire on lysosomes is tightly regulated by the actions of diverse PtdIns kinases and phosphatases; however, specific roles for PtdIns in lysosomal functions and dynamics are currently unclear and require further investigation. It was previously shown that PIKfyve, a lipid kinase that synthesizes PtdIns(3,5)P from PtdIns(3)P, controls lysosome "fusion-fission" cycle dynamics, autophagosome turnover, and endocytic cargo delivery.
View Article and Find Full Text PDFAtherosclerosis is the major cause of ischemic heart disease and stroke, the leading causes of mortality worldwide. The central pathological features of atherosclerosis include macrophage infiltration and foam cell formation. However, the detailed mechanisms regulating these two processes remain unclear.
View Article and Find Full Text PDFmutations cause the severe form of osteopetrosis with bone marrow deficiency in humans and mice, yet a role in T cell ontogeny remains to be determined. Herein, we show that thymi of the -null mice (gl/gl) from P8-to-P15 become markedly hypocellular with disturbed architecture. Analysis of gl/gl early T cell program determined a major decrease of 3-fold in bone marrow common lymphoid precursors (CLP), 35-fold in early thymic precursors (ETPs) and 100-fold in T cell double positive subpopulations.
View Article and Find Full Text PDFA high fat diet and obesity have been linked to the development of metabolic dysfunction and the promotion of multiple cancers. The causative cellular signals are multifactorial and not yet completely understood. In this report, we show that Inositol Polyphosphate-4-Phosphatase Type II B (INPP4B) signaling protects mice from diet-induced metabolic dysfunction.
View Article and Find Full Text PDFMutations in the osteopetrotic transmembrane protein 1 (Ostm1) gene are responsible for the most severe form of autosomal recessive osteopetrosis both in humans and in the gray lethal (gl/gl) mouse. This defect leads to increased bone mass with bone marrow occlusion and hematopoietic defects. To establish the expression profile of the mouse Ostm1 protein in vivo, homologous recombination in bacteria was designed to generate a V5-Ostm1 bacterial artificial chromosome (BAC) that was subsequently integrated in the mouse genome.
View Article and Find Full Text PDFThe maintenance of bone mass is a dynamic process that requires a strict balance between bone formation and resorption. Bone formation is controlled by osteoblasts, while osteoclasts are responsible for resorption of the bone matrix. The opposite functions of these cell types have to be tightly regulated not only during normal bone development, but also during adult life, to maintain serum calcium homeostasis and sustain bone integrity to prevent bone fractures.
View Article and Find Full Text PDFInositol polyphosphate-4-phosphatase type II (INPP4B) is a dual-specificity phosphatase that acts as a tumor suppressor in multiple cancers. INPP4B dephosphorylates phospholipids at the 4th position of the inositol ring and inhibits AKT and PKC signaling by hydrolyzing of PI(3,4)P2 and PI(4,5)P2, respectively. INPP4B protein phosphatase targets include phospho-tyrosines on Akt and phospho-serine and phospho-threonine on PTEN.
View Article and Find Full Text PDFis a tumour suppressor in breast, ovarian, prostate, thyroid and other cancers, attributed to its ability to reduce oncogenic Akt-signaling. However, emerging studies show that also has tumour-promoting properties in cancers including acute myeloid leukemia, colon cancer, melanoma and breast cancer. Together these findings suggest that may be a context dependent cancer gene.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2019
Immune checkpoint inhibitors such as anti-CTLA-4 antibody are widely accepted therapeutic options for many cancers, but there is still a considerable gap in achieving their full potential. We explored the potential of activating the innate and adaptive immune pathways together to improve tumor reduction and survival outcomes. We treated a mouse model of melanoma with intratumoral injections of Toll-like receptor 1/2 (TLR1/2) ligand Pam3CSK4 plus i.
View Article and Find Full Text PDFOstm1 mutations are responsible for the most severe form of osteopetrosis in human and mice. To gain insight into Ostm1 cellular functions, we engineered a conditional in-frame deletion of the Ostm1 transmembrane domain and generated the first Ostm1 mouse model with a human mutation. Systemic targeting of Ostm1 loss of transmembrane domain produced osteopetrosis, as in the null Ostm1 gl/gl mouse.
View Article and Find Full Text PDFObjective: To establish the cellular source of plasma factor (F)XIII-A.
Approach And Results: A novel mouse floxed for the gene, FXIII-A (Flox), was crossed with myeloid- and platelet-cre-expressing mice, and cellular FXIII-A mRNA expression and plasma and platelet FXIII-A levels were measured. The platelet factor 4-cre.
Am J Physiol Renal Physiol
October 2017
Diabetes is the leading cause of end-stage renal disease, resulting in a significant health care burden and loss of economic productivity by affected individuals. Because current therapies for progression of diabetic nephropathy (DN) are only moderately successful, identification of underlying mechanisms of disease is essential to develop more effective therapies. We showed previously that inhibition of arginase using -(2-boronoethyl)-l-cysteine (BEC) or genetic deficiency of the arginase-2 isozyme was protective against key features of nephropathy in diabetic mouse models.
View Article and Find Full Text PDFBone homeostasis is maintained by the sophisticated coupled actions of bone-resorbing osteoclasts and bone-forming osteoblasts. Here we identify activating transcription factor 3 (ATF3) as a pivotal transcription factor for the regulation of bone resorption and bone remodeling under a pathological condition through modulating the proliferation of osteoclast precursors. The osteoclast precursor-specific deletion of ATF3 in mice led to the prevention of receptor activator of nuclear factor-κB (RANK) ligand (RANKL)-induced bone resorption and bone loss, although neither bone volume nor osteoclastic parameter were markedly altered in these knockout mice under the physiological condition.
View Article and Find Full Text PDFBone homeostasis is maintained by the synergistic actions of bone-resorbing osteoclasts and bone-forming osteoblasts. Here, we show that the transcriptional coactivator/repressor interferon-related developmental regulator 1 (Ifrd1) is expressed in osteoclast lineages and represents a component of the machinery that regulates bone homeostasis. Ifrd1 expression was transcriptionally regulated in preosteoclasts by receptor activator of nuclear factor κB (NF-κB) ligand (RANKL) through activator protein 1.
View Article and Find Full Text PDFBiodiversity loss and climate change are both globally significant issues that must be addressed through collaboration across countries and disciplines. With the December 2015 COP21 climate conference in Paris and the recent creation of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES), it has become critical to evaluate the capacity for global research networks to develop at the interface between biodiversity and climate change. In the context of the European Union (EU) strategy to stand as a world leader in tackling global challenges, the European Commission has promoted ties between the EU and Latin America and the Caribbean (LAC) in science, technology and innovation.
View Article and Find Full Text PDFBackground: Glioblastomas are highly vascularized tumors with a prominent infiltration of macrophages/microglia whose role in promoting glioma growth, invasion, and angiogenesis has not been fully elucidated.
Methods: The contribution of myeloid-derived vascular endothelial growth factor (VEGF) to glioma growth was analyzed in vivo in a syngeneic intracranial GL261 glioma model using a Cre/loxP system to knock out the expression of VEGF-A in CD11b + myeloid cells. Changes in angiogenesis-related gene expression profile were analyzed in mutant bone marrow-derived (BMD) macrophages in vitro.
In humans and in mice, mutations in the Ostm1 gene cause the most severe form of osteopetrosis, a major bone disease, and neuronal degeneration, both of which are associated with early death. To gain insight into Ostm1 function, we first investigated by sequence and biochemical analysis an immature 34-kDa type I transmembrane Ostm1 protein with a unique cytosolic tail. Mature Ostm1 is posttranslationally processed and highly N-glycosylated and has an apparent mass of ∼60 kDa.
View Article and Find Full Text PDF