Publications by authors named "Jean Thomas Gomes"

The enhancement and control of non-linear phenomena at a nanometer scale has a wide range of applications in science and in industry. Among these phenomena, high-harmonic generation in solids is a recent focus of research to realize next generation petahertz optoelectronic devices or compact all solid state EUV sources. Here, we report on the realization of the first nanoscale high harmonic source.

View Article and Find Full Text PDF

Light beams carrying orbital angular momentum (OAM) have led to stunning applications in various fields from quantum information to microscopy. We examine OAM from the recently observed high-harmonic generation (HHG) in semiconductor crystals. HHG from solids could be a valuable approach for integrated high-flux short-wavelength coherent light sources.

View Article and Find Full Text PDF

A two-stage master-oscillator power-amplifier (MOPA) system based on Yb:YAG single-crystal-fiber (SCF) technology and designed for high peak power is studied to significantly increase the pulse energy of a low-power picosecond laser. The first SCF amplifier has been designed for high gain. Using a gain medium optimized in terms of doping concentration and length, an optical gain of 32 dB has been demonstrated.

View Article and Find Full Text PDF

We demonstrate a three-stage diode-pumped Yb:YAG single-crystal-fiber amplifier to generate femtosecond pulses at high average powers with linear or cylindrical (i.e., radial or azimuthal) polarization.

View Article and Find Full Text PDF

This paper reports on the experimental implementation of an interferometer featuring sum frequency generation (SFG) processes powered by a pump spectral doublet. The aim of this configuration is to allow the use of the SFG process over an enlarged spectral domain. By analyzing the converted signal, we experimentally demonstrate a frequency spectral compression effect from the infrared input signal to the visible one converted through the SFG process.

View Article and Find Full Text PDF