Publications by authors named "Jean Sippy"

DNA viruses recognize viral DNA and package it into virions. Specific recognition is needed to distinguish viral DNA from host cell DNA. The λ-like Escherichia coli phages are interesting and good models to examine genome packaging by large DNA viruses.

View Article and Find Full Text PDF

Many viruses employ ATP-powered motors for genome packaging. We combined genetic, biochemical, and single-molecule techniques to confirm the predicted Walker-B ATP-binding motif in the phage λ motor and to investigate the roles of the conserved residues. Most changes of the conserved hydrophobic residues resulted in >10-fold decrease in phage yield, but we identified nine mutants with partial activity.

View Article and Find Full Text PDF

ASCE ATPases include ring-translocases such as cellular helicases and viral DNA packaging motors (terminases). These motors have conserved Walker A and B motifs that bind Mg2+-ATP and a catalytic carboxylate that activates water for hydrolysis. Here we demonstrate that Glu179 serves as the catalytic carboxylate in bacteriophage λ terminase and probe its mechanistic role.

View Article and Find Full Text PDF

The base pairs of cosN, the site where the 12 base-long cohesive ends are generated in λ-like phages, show partial-two fold rotational symmetry. In a bioinformatic survey, we found that the cosN changes in 12 natural cosN variants are restricted to bp 6-to-12 of the cohesive end sequence. In contrast, bp 1-5 of the cohesive end sequence are strictly conserved (13/13), as are the two bp flanking the left nicking site (bp -2 and -1).

View Article and Find Full Text PDF

During progeny assembly, viruses selectively package virion genomes from a nucleic acid pool that includes host nucleic acids. For large dsDNA viruses, including tailed bacteriophages and herpesviruses, immature viral DNA is recognized and translocated into a preformed icosahedral shell, the prohead. Recognition involves specific interactions between the viral packaging enzyme, terminase, and viral DNA recognition sites.

View Article and Find Full Text PDF

During the assembly of many viruses, a powerful ATP-driven motor translocates DNA into a preformed procapsid. A Walker-A "P-loop" motif is proposed to coordinate ATP binding and hydrolysis with DNA translocation. We use genetic, biochemical, and biophysical techniques to survey the roles of P-loop residues in bacteriophage lambda motor function.

View Article and Find Full Text PDF

During DNA replication by the λ-like bacteriophages, immature concatemeric DNA is produced by rolling circle replication. The concatemers are processed into mature chromosomes with cohesive ends, and packaged into prohead shells, during virion assembly. Cohesive ends are generated by the viral enzyme terminase, which introduces staggered nicks at cos, an approx.

View Article and Find Full Text PDF

Phage lambda's cosB packaging recognition site is tripartite, consisting of 3 TerS binding sites, called R sequences. TerS binding to the critical R3 site positions the TerL endonuclease for nicking cosN to generate cohesive ends. The N15 cos (cos(N15)) is closely related to cos(λ), but whereas the cosB(N15) subsite has R3, it lacks the R2 and R1 sites and the IHF binding site of cosB(λ).

View Article and Find Full Text PDF

The cos sites in λ and 21 chromosomes contain binding sites that recruit terminase to initiate DNA packaging. The small subunits of terminase, gpNu1 (λ) and gp1 (21), have winged helix-turn-helix DNA binding domains, where the recognition helixes differ in four of nine residues. To initiate packaging, the small subunit binds three R sequences in the cosB subsite.

View Article and Find Full Text PDF

Klebsiella pneumoniae is an opportunistic pathogen which frequently causes hospital-acquired urinary and respiratory tract infections. K. pneumoniae may establish these infections in vivo following adherence, using the type 3 fimbriae, to indwelling devices coated with extracellular matrix components.

View Article and Find Full Text PDF

Many double-stranded DNA viruses employ ATP-driven motors to translocate their genomes into small, preformed viral capsids against large forces resisting confinement. Here, we show via direct single-molecule measurements that a mutation T194M downstream of the Walker B motif in the phage lambda gpA packaging motor causes an 8-fold reduction in translocation velocity without substantially changing processivity or force dependence, whereas the mutation G212S in the putative C (coupling) motif causes a 3-fold reduction in velocity and a 6-fold reduction in processivity. Meanwhile a T194M pseudorevertant (T194V) showed a near restoration of the wild-type dynamics.

View Article and Find Full Text PDF

When the process of cell-fate determination is examined at single-cell resolution, it is often observed that individual cells undergo different fates even when subject to identical conditions. This "noisy" phenotype is usually attributed to the inherent stochasticity of chemical reactions in the cell. Here we demonstrate how the observed single-cell heterogeneity can be explained by a cascade of decisions occurring at the subcellular level.

View Article and Find Full Text PDF

The DNA-packaging specificities of phages lambda and 21 depend on the specific DNA interactions of the small terminase subunits, which have support helix-turn-recognition helix-wing DNA-binding motifs. lambda-Terminase with the recognition helix of 21 preferentially packages 21 DNA. This chimeric terminase's ability to package lambdaDNA is reduced approximately 20-fold.

View Article and Find Full Text PDF

A key step in the assembly of many viruses is the packaging of DNA into preformed procapsids by an ATP-powered molecular motor. To shed light on the motor mechanism we used single-molecule optical tweezers measurements to study the effect of mutations in the large terminase subunit in bacteriophage lambda on packaging motor dynamics. A mutation, K84A, in the putative ATPase domain driving DNA translocation was found to decrease motor velocity by approximately 40% but did not change the force dependence or decrease processivity substantially.

View Article and Find Full Text PDF

The development of bacteriophage lambda and double-stranded DNA viruses in general involves the convergence of two separate pathways: DNA replication and head assembly. Clearly, packaging will proceed only if an empty capsid shell, the prohead, is present to receive the DNA, but genetic evidence suggests that proheads play another role in the packaging process. For example, lambda phages with an amber mutation in any head gene or in FI, the gene encoding the accessory packaging protein gpFI, are able to produce normal amounts of DNA concatemers but they are not cut, or matured, into unit length chromosomes for packaging.

View Article and Find Full Text PDF

Terminase enzymes mediate genome "packaging" during the reproduction of DNA viruses. In lambda, the gpNu1 subunit guides site-specific assembly of terminase onto DNA. The structure of the dimeric DNA binding domain of gpNu1 was solved using nuclear magnetic resonance spectroscopy.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvcsgfqga9bqr4cnm0r0mlhp08sb5914s): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once