Publications by authors named "Jean Sevigny"

Article Synopsis
  • The main enzymes responsible for breaking down nucleotides at the cell surface are NTPDases, ENPPs, alkaline phosphatases, and e5'NT, which can influence various health conditions like cancer and inflammation, making them potential therapeutic targets.
  • This review focuses on ectonucleotidase inhibitors, including both nucleoside/nucleotide analogues and bicyclic compounds, that have been patented between 2017 and 2023, highlighting their chemistry and clinical applications.
  • The review emphasizes the importance of nucleotides in regulating key physiological processes and discusses the therapeutic potential of small molecules that affect ectonucleotidase activity, including advancements in combination therapy and selectivity.
View Article and Find Full Text PDF

Human regulatory T cells (Treg) suppress other immune cells. Their dysfunction contributes to the pathophysiology of autoimmune diseases, including type 1 diabetes (T1D). Infusion of Tregs is being clinically evaluated as a novel way to prevent or treat T1D.

View Article and Find Full Text PDF

Extracellular adenosine triphosphate (ATP) conducts a complex dynamic system of broadly represented cell signaling. Ectonucleotidases are the enzymes with nucleotide hydrolytic ability that regulate ATP levels in physiological and pathological conditions, thus playing a key role in the so-called purinergic signaling. Altered ectonucleotidase expression has been reported in cancer, and the ectonucleoside triphosphate diphosphohydrolase (NTPDase) family of enzymes, with its best-known form NTPDase1 (CD39), is targeted in cancer immunotherapy.

View Article and Find Full Text PDF

An extensive range of new biologically active morpholine based thiosemicarbazones derivatives 3a-r were synthesized, characterized by spectral techniques and evaluated as inhibitors of ENPP isozymes. Most of the novel thiosemicarbazones exhibit potent inhibition towards NPP1 and NPP3 isozymes. Compound 3 h was potent inhibitor of NPP1 with IC value of 0.

View Article and Find Full Text PDF

Extracellular nucleotides and nucleosides are crucial signalling molecules, eliciting diverse biological responses in almost all organs and tissues. These molecules exert their effects by activating specific nucleotide receptors, which are finely regulated by ectonucleotidases that break down their ligands. In this comprehensive review, we aim to elucidate the relevance of extracellular nucleotides as signalling molecules in the context of smooth muscle contraction, considering the modulatory influence of ectonucleotidases on this intricate process.

View Article and Find Full Text PDF

Bladder cancer (BC) is the most common cancer of the urinary tract. Bozepinib (BZP), a purine-derived molecule, is a potential compound for the treatment of cancer. Purinergic signaling consists of the activity of nucleosides and nucleotides present in the extracellular environment, modulating a variety of biological actions.

View Article and Find Full Text PDF

NTPDase1/CD39, the major vascular ectonucleotidase, exerts thrombo-immunoregulatory function by controlling endothelial P2 receptor activation. Despite the well-described release of ATP from endothelial cells, few data are available regarding the potential role of CD39 as a regulator of arterial diameter. We thus investigated the contribution of CD39 in short-term diameter adaptation and long-term arterial remodeling in response to flow using male mice.

View Article and Find Full Text PDF

Ectonucleotidases inhibitors (ENPPs, e5'NT (CD73) and -TNAP) are potential therapeutic candidates for the treatment of cancer. Adenosine, the cancer-developing, and growth moiety is the resultant product of these enzymes. The synthesis of small molecules that can increase the acidic and ionizable structure of adenosine 5-monophosphate (AMP) has been used in traditional attempts to inhibit ENPPs, ecto-5'-nucleotidase and -TNAP.

View Article and Find Full Text PDF

Background And Aim: Essential arterial hypertension is a risk factor for stroke, myocardial infarction, heart failure, and arterial aneurysm, which are related to the activation of platelets. Purinergic signaling has a central role in platelet aggregation. Although ATP and ADP can act as a proaggregant agent, adenosine inhibits platelet aggregation and reduces vascular injury.

View Article and Find Full Text PDF

Introduction: Heparins, naturally occurring glycosaminoglycans, are widely used for thrombosis prevention. Upon application as anticoagulants in cancer patients, heparins were found to possess additional antitumor activities. Ectonucleotidases have recently been proposed as novel targets for cancer immunotherapy.

View Article and Find Full Text PDF

The aim of this research work is the synthesis of sulfamoyl-benzamides as a selective inhibitor for -NTPDases. Sulfonamides are synthesized in aqueous medium from chlorosulfonylbenzoic acid while carboxamides are synthesized using carbodiimide coupling decorated with different biologically relevant substituents such as -butyl, cyclopropyl, benzylamine, morpholine, and substituted anilines. In addition, sulfonamide-carboxamide derivatives were synthesized having the same substituents on either side.

View Article and Find Full Text PDF

Introduction: The tumor microenvironment (TME) of glioblastoma (GB) is characterized by an increased infiltration of immunosuppressive cells that attenuate the antitumor immune response. The participation of neutrophils in tumor progression is still controversial and a dual role in the TME has been proposed. In this study, we show that neutrophils are reprogrammed by the tumor to ultimately promote GB progression.

View Article and Find Full Text PDF

In this study various of thieno[3,2-d]pyrimidine derivatives have been synthesized by treating different secondary amines through aromatic nucleophilic substitution reaction (S Ar) followed by Suzuki reaction with aryl and heteroaryl boronic acids. A bis-Suzuki coupling was also performed to generate bis-aryl thienopyrimidine derivatives. The synthesized compounds were screened for the hydrolytic activity of h-NTPdase1, h-NTPdase2, h-NTPdase3, and h-NTPdase8.

View Article and Find Full Text PDF

Gut stem cells are accessible by biopsy and propagate robustly in culture, offering an invaluable resource for autologous cell therapies. Insulin-producing cells can be induced in mouse gut, but it has not been possible to generate abundant and durable insulin-secreting cells from human gut tissues to evaluate their potential as a cell therapy for diabetes. Here we describe a protocol to differentiate cultured human gastric stem cells into pancreatic islet-like organoids containing gastric insulin-secreting (GINS) cells that resemble β-cells in molecular hallmarks and function.

View Article and Find Full Text PDF

Background: Endogenously released adenine and uracil nucleotides favour the osteogenic commitment of bone marrow-derived mesenchymal stromal cells (BM-MSCs) through the activation of ATP-sensitive P2X7 and UDP-sensitive P2Y receptors. Yet, these nucleotides have their osteogenic potential compromised in post-menopausal (Pm) women due to overexpression of nucleotide metabolizing enzymes, namely NTPDase3. This prompted us to investigate whether NTPDase3 gene silencing or inhibition of its enzymatic activity could rehabilitate the osteogenic potential of Pm BM-MSCs.

View Article and Find Full Text PDF

Ticlopidine is an antithrombotic prodrug of the thienotetrahydropyridine family. For platelet inhibition it has to undergo oxidative ring-opening by cytochrome P450 enzymes. The resulting thiol reacts with a cysteine residue of the purinergic P2Y receptor on thrombocytes resulting in covalent receptor blockade.

View Article and Find Full Text PDF
Article Synopsis
  • Ectonucleotidases are special proteins in our body that help with important cell communication by breaking down certain molecules called nucleotides.
  • Problems with these proteins can lead to diseases, so scientists want to create medicines that can target them effectively.
  • Researchers developed specific inhibitors to block these proteins, focusing on two types (h-IAP and h-TNAP), and found some that work really well and could help understand how these proteins function better.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of purinergic signaling in wound healing using reconstructed human skin models called self-assembled skin substitutes (SASS).
  • It specifically evaluates the effects of purinergic receptor agonists (like ATP and UTP) and antagonists on wound area reduction, reepithelialization, and cellular proliferation.
  • Preliminary findings indicate that UTP treatment enhances skin healing by increasing keratinocyte and fibroblast proliferation, revealing the potential therapeutic role of extracellular nucleotides in skin repair.
View Article and Find Full Text PDF

The human epidermal melanocyte (hEM) are melanin-producing cells that provide skin pigmentation and protection against ultraviolet radiation. Although purinergic signaling is involved in skin biology and pathology, the presence of NTPDase members, as well as the rate of nucleotides degradation by melanocytes were not described yet. Therefore, in this study, we analyzed the expression of ectonucleotidases in hEM derived from discarded foreskin of male patients.

View Article and Find Full Text PDF

A series of adamantyl carboxamide derivatives containing sulfonate or sulfonamide moiety were designed as multitargeted inhibitors of ectonucleotide pyrophosphatases/phosphodiesterases (NPPs) and carbonic anhydrases (CAs). The target compounds were investigated for their antiproliferative activity against NCI-60 cancer cell lines panel. Three main series composed of 3- and 4-aminophenol, 4-aminoaniline, and 5-hydroxyindole scaffolds were designed based on a lead compound (A).

View Article and Find Full Text PDF
Article Synopsis
  • - Therapies for severe burn injuries are challenging, but the study explores using decellularized human amniotic membrane (DhAM) combined with adipose-derived mesenchymal stromal cells (AD-MSCs) as a potential treatment strategy for second-degree burns in animals.
  • - In a preclinical model, the combination of DhAM and AD-MSCs demonstrated significant healing improvements compared to standard treatments, with no adverse effects observed in animal organs, and promoted healthy skin regeneration.
  • - The healing process was correlated with increased CD73 expression, which may aid in wound healing by releasing adenosine, a molecule that helps reduce inflammation, especially as CD11b labeling (an inflammatory marker) was lower in the Dh
View Article and Find Full Text PDF

Leishmania infantum, the causative agent of American Visceral Leishmaniasis (VL), is known for its ability to modulate the host immune response to its own favor. Ecto-nucleoside triphosphate diphosphohydrolase (ENTPDase) represents a family of enzymes that hydrolyze nucleotides and are involved in nucleotide-dependent biological processes. L.

View Article and Find Full Text PDF

The h-NTPDases is an essential family of ectonucleotidases that consists of eight isozymes with various physiological functions. The undesired activity of the h-NTPDases leads to pathological conditions such as cancer, diabetes, inflammation, and thrombosis. In the present study, a series of thienopyrimidines was synthesized employing a sequential SNAr and Suzuki coupling to synthesize diverse aryl substituted thienopyrimidine glycinate derivatives.

View Article and Find Full Text PDF

P2Y receptor (P2YR) antagonists represent potential drugs for treating cancer, pain, neurodegeneration, asthma, diabetes, colitis and other disorders. However, there are few chemical classes of known competitive antagonists. We recently explored the structure activity relationship (SAR) of 2H-chromene derivatives as P2YR antagonists of moderate affinity.

View Article and Find Full Text PDF

Background: An important mechanism, by which cancer cells achieve immune escape, is the release of extracellular adenosine into their microenvironment. Adenosine activates adenosine A and A receptors on immune cells constituting one of the strongest immunosuppressive mediators. In addition, extracellular adenosine promotes angiogenesis, tumor cell proliferation, and metastasis.

View Article and Find Full Text PDF