Publications by authors named "Jean Sebastien Joyal"

Tissue inflammation is often broadly associated with cellular damage, yet sterile inflammation also plays critical roles in beneficial tissue remodeling. In the central nervous system, this is observed through a predominantly innate immune response in retinal vascular diseases such as age-related macular degeneration, diabetic retinopathy, and retinopathy of prematurity. Here, we set out to elucidate the dynamics of the immune response during progression and regression of pathological neovascularization in retinopathy.

View Article and Find Full Text PDF

Coronary artery disease (CAD) is more prevalent in men than in women, with endothelial dysfunction, prodromal to CAD, developing a decade earlier in middle-aged men. We investigated the molecular basis of this dimorphism ex vivo in arterial segments discarded during surgery of CAD patients. The results reveal a lower endothelial relaxant sensitivity in men, and a senescence-associated inflammaging transcriptomic signature in endothelial cells.

View Article and Find Full Text PDF

Pathological neovascularization in retinopathy of prematurity (ROP) can cause visual impairment in preterm infants. Current ROP treatments which are not preventative and only address late neovascular ROP, are costly and can lead to severe complications. We showed that topical 0.

View Article and Find Full Text PDF

Pathological neovascularization in retinopathy of prematurity (ROP) can cause visual impairment in preterm infants. Current ROP treatments which are not preventative and only address late neovascular ROP, are costly and can lead to severe complications. We showed that topical 0.

View Article and Find Full Text PDF

Zonula occludens-1 (ZO-1) is involved in the regulation of cell-cell junctions between endothelial cells (ECs). Here we identify the ZO-1 protein interactome and uncover ZO-1 interactions with RNA-binding proteins that are part of stress granules (SGs). Downregulation of ZO-1 increased SG formation in response to stress and protected ECs from cellular insults.

View Article and Find Full Text PDF

An 11-month-old girl with severe acidosis, lethargy and vomiting, was diagnosed with holocarboxylase synthetase deficiency. She received biotin and was stable until age 8 years when vomiting, severe acidosis, hypoglycemia, and hyperammonemia developed. Management with intravenous glucose aiming to stimulate anabolism led to hyperglycemic ketoacidosis.

View Article and Find Full Text PDF

Compromised vascular endothelial barrier function is a salient feature of diabetic complications such as sight-threatening diabetic macular edema (DME). Current standards of care for DME manage aspects of the disease, but require frequent intravitreal administration and are poorly effective in large subsets of patients. Here we provide evidence that an elevated burden of senescent cells in the retina triggers cardinal features of DME pathology and conduct an initial test of senolytic therapy in patients with DME.

View Article and Find Full Text PDF

Macrophages populate the embryo early in gestation, but their role in development is not well defined. In particular, specification and function of macrophages in intestinal development remain little explored. To study this event in the human developmental context, we derived and combined human intestinal organoid and macrophages from pluripotent stem cells.

View Article and Find Full Text PDF

The GPCR HCAR1 is known to be the sole receptor for lactate, which modulates its metabolic effects. Despite its significant role in many processes, mice deficient in HCAR1 exhibit no visible phenotype and are healthy and fertile. We performed transcriptomic analysis on HCAR1 deficient cells, in combination with lactate, to explore pathophysiologically altered processes.

View Article and Find Full Text PDF

Background: Nicotinamide adenine dinucleotide phosphate oxidase complex 2 (NOX2) deficiency, or chronic granulomatous disease (CGD), is an inborn error of immunity associated with increased susceptibility to infection and inflammatory manifestations. The pathophysiologic mechanism leading to the increased inflammatory response in CGD remains elusive.

Objective: We investigated the pathophysiologic mechanisms leading to NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation in NOX2 deficiency.

View Article and Find Full Text PDF

Melanomas reprogram their metabolism to rapidly adapt to therapy-induced stress conditions, allowing them to persist and ultimately develop resistance. We report that a subpopulation of melanoma cells tolerate MAPK pathway inhibitors (MAPKis) through a concerted metabolic reprogramming mediated by peroxisomes and UDP-glucose ceramide glycosyltransferase (UGCG). Compromising peroxisome biogenesis, by repressing PEX3 expression, potentiated the proapoptotic effects of MAPKis via an induction of ceramides, an effect limited by UGCG-mediated ceramide metabolism.

View Article and Find Full Text PDF

Deleterious variants in acetylneuraminate pyruvate lyase (NPL) cause skeletal myopathy and cardiac edema in humans and zebrafish, but its physiological role remains unknown. We report generation of mouse models of the disease: , carrying the human p.Arg63Cys variant, and with a 116-bp exonic deletion.

View Article and Find Full Text PDF

In skeletal muscle, muscle stem cells (MuSC) are the main cells responsible for regeneration upon injury. In diseased skeletal muscle, it would be therapeutically advantageous to replace defective MuSCs, or rejuvenate them with drugs to enhance their self-renewal and ensure long-term regenerative potential. One limitation of the replacement approach has been the inability to efficiently expand MuSCs ex vivo, while maintaining their stemness and engraftment abilities.

View Article and Find Full Text PDF

Pathological neovascularization in age-related macular degeneration (nvAMD) drives the principal cause of blindness in the elderly. While there is a robust genetic association between genes of innate immunity and AMD, genome-to-phenome relationships are low, suggesting a critical contribution of environmental triggers of disease. Possible insight comes from the observation that a past history of infection with pathogens such as Chlamydia pneumoniae, or other systemic inflammation, can predispose to nvAMD in later life.

View Article and Find Full Text PDF

Age-related macular degeneration is a prevalent neuroinflammatory condition and a major cause of blindness driven by genetic and environmental factors such as obesity. In diseases of aging, modifiable factors can be compounded over the life span. We report that diet-induced obesity earlier in life triggers persistent reprogramming of the innate immune system, lasting long after normalization of metabolic abnormalities.

View Article and Find Full Text PDF

Homeostatic adaptation to systemic iron overload involves transcriptional induction of bone morphogenetic protein 6 (BMP6) in liver sinusoidal endothelial cells (LSECs). BMP6 is then secreted to activate signaling of the iron hormone hepcidin (HAMP) in neighboring hepatocytes. To explore the mechanism of iron sensing by LSECs, we generated TfrcTek-Cre mice with endothelial cell-specific ablation of transferrin receptor 1 (Tfr1).

View Article and Find Full Text PDF

The GPCR SUCNR1/GPR91 exerts proangiogenesis upon stimulation with the Krebs cycle metabolite succinate. GPCR signaling depends on the surrounding environment and intracellular localization through location bias. Here, we show by microscopy and by cell fractionation that in neurons, SUCNR1 resides at the endoplasmic reticulum (ER), while being fully functional, as shown by calcium release and the induction of the expression of the proangiogenic gene for VEGFA.

View Article and Find Full Text PDF
Article Synopsis
  • Dyslipidemia and autophagy are involved in the development of neovascular age-related macular degeneration (NV-AMD), with the VLDL receptor (VLDLR) playing a key role in fatty acid uptake in photoreceptors.
  • Circulating excess lipids inhibit autophagy in the retina, leading to energy deficiency and promoting pathological vascular growth in a mouse model resembling NV-AMD.
  • Targeting FFAR1, which regulates autophagy and metabolism, may enhance photoreceptor function and offer new therapeutic strategies for treating NV-AMD.
View Article and Find Full Text PDF

Pluripotent stem cell (PSC)-derived hepatocyte-like cells (HLCs) have shown great potential as an alternative to primary human hepatocytes (PHHs) for in vitro modeling. Several differentiation protocols have been described to direct PSCs toward the hepatic fate. Here, by leveraging recent knowledge of the signaling pathways involved in liver development, we describe a robust, scalable protocol that allowed us to consistently generate high-quality bipotent human hepatoblasts and HLCs from both embryonic stem cells and induced PSC (iPSCs).

View Article and Find Full Text PDF

The roles of nitric oxide (NO) and endothelial NO synthase (eNOS) in the regulation of angiogenesis are well documented. However, the involvement of eNOS in the sprouting of endothelial tip-cells at the vascular front during sprouting angiogenesis remains poorly defined. In this study, we show that downregulation of eNOS markedly inhibits VEGF-stimulated migration of endothelial cells but increases their polarization, as evidenced by the reorientation of the Golgi in migrating monolayers and by the fewer filopodia on tip cells at ends of sprouts in endothelial cell spheroids.

View Article and Find Full Text PDF
Article Synopsis
  • Individuals born preterm show changes in the left ventricle and have a higher risk of heart diseases, and this study explores how neonatal hyperoxia (high oxygen exposure) affects left ventricle mitochondria in rats, simulating preterm birth conditions.
  • The research found that rats exposed to high oxygen had smaller mitochondria, impaired function, and signs of oxidative stress, indicating potential cardiac issues.
  • In human young adults, those born preterm had lower levels of a mitochondrial peptide called humanin, which correlated with specific heart function metrics, suggesting lasting impacts of preterm birth on heart health.
View Article and Find Full Text PDF

Purpose: The purpose of this study was to develop an in vivo optical coherence tomography (OCT) system capable of imaging the developing mouse retina and its associated morphometric and microstructural changes.

Methods: Thirty-four wild-type mice (129S1/SvlmJ) were anesthetized and imaged between postnatal (P) day 7 and P21. OCT instrumentation was developed to optimize signal intensity and image quality.

View Article and Find Full Text PDF

Objectives: Our understanding of pediatric acute respiratory distress syndrome is based on information from studies reporting intermittent, serial respiratory data. We have analyzed a high-resolution, longitudinal dataset that incorporates measures of hypoxemia severity, metrics of lung mechanics, ventilatory ratio, and mechanical power and examined associations with survival after the onset of pediatric acute respiratory distress syndrome.

Design: Single-center retrospective cohort, 2013-2018.

View Article and Find Full Text PDF

The kallikrein-kinin system (KKS) contributes to retinal inflammation and neovascularization, notably in diabetic retinopathy (DR) and neovascular age-related macular degeneration (AMD). Bradykinin type 1 (B1R) and type 2 (B2R) receptors are G-protein-coupled receptors that sense and mediate the effects of kinins. While B2R is constitutively expressed and regulates a plethora of physiological processes, B1R is almost undetectable under physiological conditions and contributes to pathological inflammation.

View Article and Find Full Text PDF

Endothelial tip cells guiding tissue vascularization are primary targets for angiogenic therapies. Whether tip cells require differential signals to develop their complex branching patterns remained unknown. Here, we show that diving tip cells invading the mouse neuroretina (D-tip cells) are distinct from tip cells guiding the superficial retinal vascular plexus (S-tip cells).

View Article and Find Full Text PDF