Cutaneous T-cell lymphoma (CTCL) is a devastating, potentially fatal T-lymphocyte malignancy affecting the skin. Despite all efforts, the etiology of this disease remains unknown. Infectious agents have long been suspected as factors or co-factors in CTCL pathogenesis.
View Article and Find Full Text PDFThe oncolytic rodent protoparvoviruses (PVs) minute virus of mice (MVMp) and H-1 parvovirus (H-1PV) are promising cancer viro-immunotherapy candidates capable of both exhibiting direct oncolytic activities and inducing anticancer immune responses (AIRs). Type-I interferon (IFN) production is instrumental for the activation of an efficient AIR. The present study aims at characterizing the molecular mechanisms underlying PV modulation of IFN induction in host cells.
View Article and Find Full Text PDFFor many applications it is necessary to detect target proteins in living cells. This is particularly the case when monitoring viral infections, in which the presence (or absence) of distinct target polypeptides potentially provides vital information about the pathology caused by the agent. To obtain suitable tools with which to monitor parvoviral infections, we thus generated monoclonal antibodies (mAbs) in order to detect the major non-structural protein NS1 in the intracellular environment and tested them for sensitivity and specificity, as well as for cross-reactivity towards related species.
View Article and Find Full Text PDFVirotherapy research involves the development, exploration, and application of oncolytic viruses that combine direct killing of cancer cells by viral infection, replication, and spread (oncolysis) with indirect killing by induction of anti-tumor immune responses. Oncolytic viruses can also be engineered to genetically deliver therapeutic proteins for direct or indirect cancer cell killing. In this review-as part of the special edition on "State-of-the-Art Viral Vector Gene Therapy in Germany"-the German community of virotherapists provides an overview of their recent research activities that cover endeavors from screening and engineering viruses as oncolytic cancer therapeutics to their clinical translation in investigator-initiated and sponsored multi-center trials.
View Article and Find Full Text PDFPurpose: To investigate the safety, clinical efficacy, virus pharmacokinetics, shedding, and immune response after administration of an oncolytic parvovirus (H-1PV, ParvOryx) to patients with metastatic pancreatic ductal adenocarcinoma (PDAC) refractory to first-line therapy.
Patients And Methods: This is a noncontrolled, single-arm, open-label, dose-escalating, single-center clinical trial. Seven patients with PDAC and at least one liver metastasis were included.
Hepatocellular carcinoma (HCC) is related to increasing incidence rates and poor clinical outcomes due to lack of efficient treatment options and emerging resistance mechanisms. The aim of the present study is to exploit a non-viral gene therapy enabling the expression of the parvovirus-derived oncotoxic protein NS1 in HCC. This anticancer protein interacts with different cellular kinases mediating a multimodal host-cell death.
View Article and Find Full Text PDFResistance to anticancer treatments poses continuing challenges to oncology researchers and clinicians. The underlying mechanisms are complex and multifactorial. However, the immunologically "cold" tumor microenvironment (TME) has recently emerged as one of the critical players in cancer progression and therapeutic resistance.
View Article and Find Full Text PDFFluorescence in situ hybridization (FISH) is a specific, sensitive, accurate, and reliable technique widely applied in both research and clinic. Here we describe the detailed protocol of a FISH method established by us to serve the scientific purposes of the first oncolytic parvovirus clinical trial (ParvOryx01). This trial was launched in Germany in 2011.
View Article and Find Full Text PDFCancer cells utilize multiple mechanisms to evade and suppress anticancer immune responses creating a "cold" immunosuppressive tumor microenvironment. Oncolytic virotherapy is emerging as a promising approach to revert tumor immunosuppression and enhance the efficacy of other forms of immunotherapy. Growing evidence indicates that oncolytic viruses (OVs) act in a multimodal fashion, inducing immunogenic cell death and thereby eliciting robust anticancer immune responses.
View Article and Find Full Text PDFThe recent therapeutic success of immune checkpoint inhibitors in the treatment of advanced melanoma highlights the potential of cancer immunotherapy. Oncolytic virus-based therapies may further improve the outcome of these cancer patients. A human melanoma model was used to investigate the oncolytic parvovirus H-1 (H-1PV) in combination with ipilimumab and/or nivolumab.
View Article and Find Full Text PDFRodent protoparvoviruses (PVs), parvovirus H-1 (H-1PV) in particular, are naturally endowed with oncolytic properties. While being historically described as agents that selectively replicate in and kill cancer cells, recent yet growing evidence demonstrates that these viruses are able to reverse tumor-driven immune suppression through induction of immunogenic tumor cell death, and the establishment of antitumorigenic, proinflammatory milieu within the tumor microenvironment. This review summarizes the most important preclinical proofs of the interplay and the cooperation between PVs and the host immune system.
View Article and Find Full Text PDFAbout 70% of all Ewing sarcoma (EWS) patients are diagnosed under the age of 20 years. Over the last decades little progress has been made towards finding effective treatment approaches for primarily metastasized or refractory Ewing sarcoma in young patients. Here, in the context of the search for novel therapeutic options, the potential of oncolytic protoparvovirus H-1 (H-1PV) to treat Ewing sarcoma was evaluated, its safety having been proven previously tested in adult cancer patients and its oncolytic efficacy demonstrated on osteosarcoma cell cultures.
View Article and Find Full Text PDFViruses
March 2018
Single nucleotide changes were introduced into the non-structural (NS) coding sequence of the H-1 parvovirus (PV) infectious molecular clone and the corresponding virus stocks produced, thereby generating H1-PM-I, H1-PM-II, H1-PM-III, and H1-DM. The effects of the mutations on viral fitness were analyzed. Because of the overlapping sequences of NS1 and NS2, the mutations affected either NS2 (H1-PM-II, -III) or both NS1 and NS2 proteins (H1-PM-I, H1-DM).
View Article and Find Full Text PDFKnown activators of the Peroxisome Proliferator-Activated Receptor γ (PPARγ), thiazolidinediones (TZD) induce apoptosis in a variety of cancer cells through dependent and/or independent mechanisms of the receptor. We tested a panel of TZD (Rosiglitazone, Pioglitazone, Ciglitazone) to shed light on their potential therapeutic effects on three cervical cancer cell lines (HeLa, Ca Ski, C-33 A). In these cells, only ciglitazone triggered apoptosis through PPARγ-independent mechanisms and in particular both extrinsic and intrinsic pathways in Ca Ski cells containing Human PapillomaVirus (HPV) type 16.
View Article and Find Full Text PDFGlioblastoma, one of the most aggressive primary brain tumors, is characterized by highly immunosuppressive microenvironment. This contributes to glioblastoma resistance to standard treatment modalities and allows tumor growth and recurrence. Several immune-targeted approaches have been recently developed and are currently under preclinical and clinical investigation.
View Article and Find Full Text PDFAdeno-associated virus vectors are a powerful tool for gene transfer approaches. We have established a simple and fast plasmid-based production system for achieving high adeno-associated virus titers within 6 working days. The same procedure can be used for all serotypes and thus allows direct comparability of different serotypes.
View Article and Find Full Text PDFOsteosarcoma is the most frequent malignant disease of the bone. On the basis of early clinical experience in the 1960s with H-1 protoparvovirus (H-1PV) in osteosarcoma patients, this effective oncolytic virus was selected for systematic preclinical testing on various osteosarcoma cell cultures. A panel of five human osteosarcoma cell lines (CAL 72, H-OS, MG-63, SaOS-2, U-2OS) was tested.
View Article and Find Full Text PDFOncolytic virotherapy may be a means of improving the dismal prognosis of malignant brain tumors. The rat H-1 parvovirus (H-1PV) suppresses tumors in preclinical glioma models, through both direct oncolysis and stimulation of anticancer immune responses. This was the basis of ParvOryx01, the first phase I/IIa clinical trial of an oncolytic parvovirus in recurrent glioblastoma patients.
View Article and Find Full Text PDFVirotherapy is a unique modality for the treatment of cancer with oncolytic viruses (OVs) that selectively infect and lyse tumor cells, spread within tumors, and activate anti-tumor immunity. Various viruses are being developed as OVs preclinically and clinically, several of them engineered to encode therapeutic proteins for tumor-targeted gene therapy. Scientists and clinicians in German academia have made significant contributions to OV research and development, which are highlighted in this review paper.
View Article and Find Full Text PDFBackground: Metastatic pancreatic cancer has a dismal prognosis, with a mean six-month progression-free survival of approximately 50% and a median survival of about 11 months. Despite intensive research, only slight improvements of clinical outcome could be achieved over the last decades. Hence, new and innovative therapeutic strategies are urgently required.
View Article and Find Full Text PDFNon-Hodgkin lymphoma (NHL) and leukemia are among the most common cancers worldwide. While the treatment of NHL/leukemia of B-cell origin has much progressed with the introduction of targeted therapies, few treatment standards have been established for T-NHL/leukemia. As presentation in both B- and T-NHL/leukemia patients is often aggressive and as prognosis for relapsed disease is especially dismal, this cancer entity poses major challenges and requires innovative therapeutic approaches.
View Article and Find Full Text PDFThe rodent protoparvovirus H-1PV, with its oncolytic and oncosuppressive properties, is a promising anticancer agent currently under testing in clinical trials. This explains the current demand for a scalable, good manufacturing practice-compatible virus purification process yielding high-grade pure infectious particles and overcoming the limitations of the current system based on density gradient centrifugation. We describe here a scalable process offering high purity and recovery.
View Article and Find Full Text PDFHum Gene Ther
March 2017
Application of oncolytic viruses is a valuable option to broaden the armament of anticancer therapies, as these combine specific cytotoxic effects and immune-stimulating properties. The self-replicating H-1 parvovirus (H-1PV) is a prototypical oncolytic virus that, besides targeting tumor cells, also infects endothelial cells, thus combining oncolytic and angiostatic traits. To increase its therapeutic value, H-1PV can be armed with cytokines or chemokines to enhance the immunological response.
View Article and Find Full Text PDFObjectives: Our aim was to establish and characterize a novel pancreatic ductal adenocarcinoma cell line from a patient in whom the origin of the invasive carcinoma could be traced back to the intraductal papillary mucinous neoplasm (IPMN) precursor lesion.
Methods: The primary patient-derived tumor was propagated in immunocompromised mice for 2 generations and used to establish a continuous in vitro culture termed ASAN-PaCa. Transplantation to fertilized chicken eggs confirmed the tumorigenic potential in vivo.