Publications by authors named "Jean Roman"

Article Synopsis
  • Combining microfluidics and sensors creates advanced analysis systems, allowing for electrical sensing and analysis within tiny fluid channels.
  • The paper outlines the challenges in connecting these microfluidic networks with electrical components and presents a new device for studying red blood cell flow.
  • Results include the device's ability to distinguish red blood cells affected by sickle cell disease, highlighting its potential for clinical applications.
View Article and Find Full Text PDF

Solid-state nanopores provide a powerful tool to electrically analyze nanoparticles and biomolecules at single-molecule resolution. These biosensors need to have a controlled surface to provide information about the analyte. Specific detection remains limited due to nonspecific interactions between the molecules and the nanopore.

View Article and Find Full Text PDF

This paper describes the use of a microfluidic device comprising channels with dimensions mimicking those of the smallest capillaries found in the human microcirculation. The device structure, associated with a pair of microelectrodes, provides a tool to electrically measure the transit time of red blood cells through fine capillaries and thus generate an electrical signature for red blood cells in the context of human erythroid genetic disorders, such as sickle cell disease or hereditary spherocytosis, in which red cell elasticity is altered. Red blood cells from healthy individuals, heated or not, and red blood cells from patients with sickle cell disease or hereditary spherocytosis where characterized at a single cell level using our device.

View Article and Find Full Text PDF

Solid-state nanopores have a huge potential in upcoming societal challenging applications in biotechnologies, environment, health, and energy. Nowadays, these sensors are often used within bulky fluidic devices that can cause cross-contaminations and risky nanopore chips manipulations, leading to a short experimental lifetime. We describe the easy, fast, and cheap innovative 3D-printer-helped protocol to manufacture a microfluidic device permitting the reversible integration of a silicon based chip containing a single nanopore.

View Article and Find Full Text PDF

Nanopores constitute devices for the sensing of nano-objects such as ions, polymer chains, proteins or nanoparticles. We describe what information we can extract from the current trace. We consider the entrance of polydisperse chains into the nanopore, which leads to a conductance drop.

View Article and Find Full Text PDF

Electrical detection based on single nanopores is an efficient tool to detect biomolecules, particles and study their morphology. Nevertheless the surface of the solid-state membrane supporting the nanopore should be better controlled. Moreover, nanopore should be integrated within microfluidic architecture to facilitate control fluid exchanges.

View Article and Find Full Text PDF