Human cadavers constitute very useful educational tools to teach anatomy in medical scholarship and related disciplines such as physiology, for example. However, as biological material, human body is subjected to decay. Thanatopraxy cares such as embalming have been developed to slow down and inhibit this decay, but the formula used for the preservation fluids are mainly formaldehyde (FA)-based.
View Article and Find Full Text PDFThe optional course « Living facing death » is the result of an innovative educational approach jointly developed by CHUV's Palliative Care Service, Lausanne's School of Medicine, Medical Ethics Unit and the students' association « Doctors & Death ». It is intended for 3rd and 4th grade medical students and was inspired by previous experiences conducted at Harvard Medical School. Its primary objective is to help students to « take some distances ».
View Article and Find Full Text PDFThe calyx of Held, a large axo-somatic relay synapse containing hundreds of presynaptic active zones, is possibly the largest nerve terminal in the mammalian CNS. Studying its initial growth in-vitro might provide insights into the specification of synaptic connection size in the developing brain. However, attempts to maintain calyces of Held in organotypic cultures have not been fruitful in past studies.
View Article and Find Full Text PDFThe homeodomain transcription factor Nkx2.1 (NK2 homeobox 1) controls cell differentiation of telencephalic GABAergic interneurons and oligodendrocytes. Here we show that Nkx2.
View Article and Find Full Text PDFPostnatal hippocampal neurogenesis induces network remodeling and may participate to mechanisms of learning. In turn, the maturation and survival of newborn neurons is regulated by their activity. Here, we tested the effect of a cell-autonomous overexpression of synaptic adhesion molecules on the maturation and survival of neurons born postnatally and on hippocampal-dependent memory performances.
View Article and Find Full Text PDFThe NG2(+) glia, also known as polydendrocytes or oligodendrocyte precursor cells, represent a new entity among glial cell populations in the central nervous system. However, the complete repertoire of their roles is not yet identified. The embryonic NG2(+) glia originate from the Nkx2.
View Article and Find Full Text PDFGuidepost cells present at and surrounding the midline provide guidance cues that orient the growing axons through commissures. Here we show that the transcription factor Nkx2.1 known to control the specification of GABAergic interneurons also regulates the differentiation of astroglia and polydendrocytes within the mouse anterior commissure (AC).
View Article and Find Full Text PDFThe corpus callosum (CC) plays a crucial role in interhemispheric communication. It has been shown that CC formation relies on the guidepost cells located in the midline region that include glutamatergic and GABAergic neurons as well as glial cells. However, the origin of these guidepost GABAergic neurons and their precise function in callosal axon pathfinding remain to be investigated.
View Article and Find Full Text PDFThe corpus callosum (CC) is the major commissure that bridges the cerebral hemispheres. Agenesis of the CC is associated with human ciliopathies, but the origin of this default is unclear. Regulatory Factor X3 (RFX3) is a transcription factor involved in the control of ciliogenesis, and Rfx3-deficient mice show several hallmarks of ciliopathies including left-right asymmetry defects and hydrocephalus.
View Article and Find Full Text PDFThe AP-1 family transcription factor ATF2 is essential for development and tissue maintenance in mammals. In particular, ATF2 is highly expressed and activated in the brain and previous studies using mouse knockouts have confirmed its requirement in the cerebellum as well as in vestibular sense organs. Here we present the analysis of the requirement for ATF2 in CNS development in mouse embryos, specifically in the brainstem.
View Article and Find Full Text PDFThe corpus callosum (CC) is the main pathway responsible for interhemispheric communication. CC agenesis is associated with numerous human pathologies, suggesting that a range of developmental defects can result in abnormalities in this structure. Midline glial cells are known to play a role in CC development, but we here show that two transient populations of midline neurons also make major contributions to the formation of this commissure.
View Article and Find Full Text PDFObjective: Our laboratory has previously established in vitro that a caspase-generated RasGAP NH(2)-terminal moiety, called fragment N, potently protects cells, including insulinomas, from apoptotic stress. We aimed to determine whether fragment N can increase the resistance of pancreatic beta-cells in a physiological setting.
Research Design And Methods: A mouse line, called rat insulin promoter (RIP)-N, was generated that bears a transgene containing the rat insulin promoter followed by the cDNA-encoding fragment N.
Serotonin [5-hydroxytryptamine (5-HT)] neurotransmission in the central nervous system modulates depression and anxiety-related behaviors in humans and rodents, but the responsible downstream receptors remain poorly understood. We demonstrate that global disruption of 5-HT2A receptor (5HT2AR) signaling in mice reduces inhibition in conflict anxiety paradigms without affecting fear-conditioned and depression-related behaviors. Selective restoration of 5HT2AR signaling to the cortex normalized conflict anxiety behaviors.
View Article and Find Full Text PDFA series of studies in schizophrenic patients report a decrease of glutathione (GSH) in prefrontal cortex (PFC) and cerebrospinal fluid, a decrease in mRNA levels for two GSH synthesizing enzymes and a deficit in parvalbumin (PV) expression in a subclass of GABA neurons in PFC. GSH is an important redox regulator, and its deficit could be responsible for cortical anomalies, particularly in regions rich in dopamine innervation. We tested in an animal model if redox imbalance (GSH deficit and excess extracellular dopamine) during postnatal development would affect PV-expressing neurons.
View Article and Find Full Text PDFThere are two main types of layer V pyramidal neurons in rat cortex. Type I neurons have tufted apical dendrites extending into layer I, produce bursts of action potentials and project to subcortical targets (spinal cord, superior colliculus and pontine nuclei). Type II neurons have apical dendrites, which arborize in layers II-IV, do not produce bursts of action potentials and project to ipsilateral and contralateral cortex.
View Article and Find Full Text PDFBackground: No agreement has been found in the literature concerning the safest point of ligation of the inferior mesenteric artery (ima) in order to avoid nerve damage during the surgery of rectal cancer.
Study Design: The distance between the origin of the ima and the left paraortic trunk was measured, as was the distance between the left paraortic trunk and the origin of the left colic artery (lca). The measurements were carried out on 20 cadavers and during 22 operations for rectal cancer.
The raphe nuclei are distributed near the midline of the brainstem along its entire rostro-caudal extension. The serotonergic neurons are their main neuronal components, although a proportion of them lie in subdivisions of the lateral reticular formation. They develop from mesopontine and medullary primordia, and the resulting grouping into rostral and caudal clusters is maintained into adulthood, and is reflected in the connectivity.
View Article and Find Full Text PDFAcute excitotoxic neuronal death was studied in rat organotypic hippocampal slices exposed to 100 micro mN-methyl-d-aspartate. Fulgurant death of pyramidal neurons occurred in the CA1 and CA3 regions and was already detectable within 2 h of the N-methyl-d-aspartate administration. Morphologically, the neuronal death was neither apoptotic nor necrotic but had the hallmarks of autophagic neuronal death, as shown by acid phosphatase histochemistry in both CA1 and CA3 and by electron microscopy in CA1.
View Article and Find Full Text PDFGABA(B) receptors are G-protein-coupled receptors that mediate slow onset and prolonged effects of GABA in the central nervous system (CNS). While they appear to influence developmental events, depending on where they are found at a synapse, little, if anything, is known as to the expression of GABA(B1) and GABA(B2) receptor mRNAs during the early developmental stages. We used in situ hybridization and RNase protection assays (RPA) to investigate the early fetal expression of GABA(B1) and GABA(B2) receptor mRNAs on the development of the rat CNS.
View Article and Find Full Text PDFVesicular transport involves SNARE (soluble- N-ethylmaleimide-sensitive-factor-attachment-protein-receptor) proteins on transport vesicles and on target membranes. Syntaxin 13 is a SNARE enriched in brain, associated with recycling endosomes; its overexpression in PC12 cells promotes neurite outgrowth. This suggests an important role for receptor recycling during neuronal differentiation.
View Article and Find Full Text PDFIn the central nervous system, the aggregation of receptors is crucial for synapse formation and function. To study the role of presynaptic terminals in the maintenance of postsynaptic specializations, we analyzed the synaptic contacts between Purkinje cells and neurons of the deep cerebellar nuclei in two in vivo models: the Lurcher and Purkinje cell-deficient (PCD) mutant mice. These mutants lose their Purkinje cells at different postnatal stages.
View Article and Find Full Text PDF