Publications by authors named "Jean Pierre Bucher"

Nanostructures, fabricated by locating molecular building blocks in well-defined positions, for example, on a lattice, are ideal platforms for studying atomic-scale quantum effects. In this context, STM data obtained from self-assembled Bis(phthalocyaninato) Terbium (III) (TbPc) single-molecule magnets on various substrates have raised questions about the conformation of the TbPc molecules within the lattice. In order to address this issue, molecular dynamics simulations were carried out on a 2D assembly of TbPc molecules.

View Article and Find Full Text PDF

The active material of optoelectronic devices must accommodate for contacts which serve to collect or inject the charge carriers. It is the purpose of this work to find out to which extent properties of organic optoelectronic layers change close to metal contacts compared to known properties of bulk materials. Bottom-up fabrication capabilities of model interfaces under ultrahigh vacuum and single-atom low temperature (LT)-STM spectroscopy with density functional theory (DFT) calculations are used to detect the spatial modifications of electronic states such as frontier-orbitals at interfaces.

View Article and Find Full Text PDF

We have investigated the morphological and optical properties of α- and β-phase Zinc Phthalocyanine (ZnPc) thin films for application to organic photovoltaic cells (OPVs). It was found that the α-phase is completely converted to the β-phase by thermal annealing at 220 °C under ultrahigh vacuum conditions. When the α- to β-phase transition takes place, the surface roughness of the ZnPc film became flat uniformly with a nanometer order of unevenness by anisotropic growth of crystalline grains along a lateral direction to substrates.

View Article and Find Full Text PDF

Bis(phthalocyaninato)lanthanide (LnPc) double-decker-based devices have recently attracted a great deal of interest for data encoding purposes. Although the 4f-electrons of lanthanide ions play a key role in the experimental methodology, their localized character, deeper in energy compared to the 3d electrons of transition metals, hampers a detailed investigation. Here, our approach consists of the follow-up of the entanglement process with other molecules and with the substrate electrons by means of space-resolved detection of the Kondo resonance by scanning tunneling spectroscopy (STS), using different substrates (from weak to strong interaction).

View Article and Find Full Text PDF

The vibrational excitation related transport properties of a manganese phthalocyanine molecule suspended between the tip of a scanning tunneling microsope (STM) and a surface are investigated by combining the local manipulation capabilities of the STM with inelastic electron tunneling spectroscopy. By attachment of the molecule to the probe tip, the intrinsic physical properties similar to those exhibited by a free standing molecule become accessible. This technique allows one to study locally the magnetic properties, as well as other elementary excitations and their mutual interaction.

View Article and Find Full Text PDF

We have examined the structural, electronic, and optical properties of zinc-octaethylporphyrin [Zn(OEP)]/C co-deposited films to elucidate the donor (D)-acceptor (A) interactions at the D/A interface of heterojunction organic solar cells (OSCs), using Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, and photoluminescence (PL) spectroscopy in combination with first-principles and semi-empirical calculations. The FT-IR and XRD results indicated that Zn(OEP) and C were mixed with each other at the molecular level in the co-deposited film. The theoretical calculations suggested that in the interfacial region, it is energetically preferable for the C molecule to face the center of the planar structure of Zn(OEP) at a distance of 2.

View Article and Find Full Text PDF

When single molecule magnets (SMMs) self-assemble into 2D networks on a surface, they interact via the π-electrons of their ligands. This interaction is relevant to the quantum entanglement between molecular qubits, a key issue in quantum computing. Here, we examine the role played by the unpaired radical electron in the top ligand of Tb double-decker SMMs by comparing the spectroscopic features of isolated and 2D assembled entities on surfaces.

View Article and Find Full Text PDF

Scanning tunneling spectroscopy (STS) has become a key tool for accessing properties of organometallic molecules adsorbed on surfaces. However, the rich variety of signatures makes it sometimes a difficult task to find out which feature is intrinsic to the molecule, i.e.

View Article and Find Full Text PDF

A key stage in engineering molecular functional organizations is represented by controlling the supramolecular assembly of single molecular building blocks, tectons, into ordered networks. Here, we show how an open-shell, propeller-like molecule has been deposited under UHV conditions on Au(111) and its supramolecular organization characterized by scanning tunneling microscopy (STM). Racemic islands were observed at room temperature, and their chirality was imaged at the molecular level at low temperature.

View Article and Find Full Text PDF

It is now possible to write and read magnetic information at the atomic scale by manipulating and imaging atoms on a magnetic template with a spin-polarized scanning tunnelling microscope.

View Article and Find Full Text PDF

Recent advances on the organization and characterization of [Mn12] single molecule magnets (SMMs) on a surface or in 3D are reviewed. By using nonconventional techniques such as X-ray magnetic circular dichroism (XMCD) and scanning tunneling microscopy (STM), it is shown that [Mn12]-based SMMs deposited on a surface lose their SMM behavior, even though the molecules seem to be structurally undamaged. A new approach is reported to get high-density information-storage devices, based on the 3D assembling of SMMs in a liquid crystalline phase.

View Article and Find Full Text PDF

Two self-complementary phenanthroline-strapped porphyrins bearing imidazole arms and C 12 or C 18 alkyl chains were synthesized, and their surface self-assembly was investigated by atomic force microscopy (AFM) on mica and highly ordered pyrrolitic graphite (HOPG). Upon zinc(II) complexation, stable porphyrin dimers formed, as confirmed by DOSY (1)H NMR and UV-visible spectroscopy. In solution, the dimers formed J-aggregates.

View Article and Find Full Text PDF

The controlled stoichiometry of heterometallic carbonyl clusters make them attractive precursors for the stabilization of bare metal alloy clusters for magnetic applications. The mixed-metal molecular cluster [RuCo3(H)(CO)12] has been functionalized with the phosphane-thiol ligand Ph2PCH2CH2SH to allow subsequent anchoring on a gold surface. The resulting tetrahedral cluster [RuCo3(H)(CO)11(Ph2PCH2CH2SH)] (1) has been characterized by X-ray diffraction and the P-monodentate ligand is axially bound to a cobalt center and trans to the ruthenium cap.

View Article and Find Full Text PDF

Mass transport at surfaces can proceed either (i) by hopping diffusion of atoms on top of the surface from one site to another or (ii) by propagation of small displacements from one atom to the next within the topmost atomic layer. In the latter case, a long range substrate mediated mass transport has been postulated but never observed explicitly. Experimental and theoretical evidence is shown here for the occurrence of such a mechanism on the reconstructed Au(111) surface, where the movement is shown to be well described by a soliton.

View Article and Find Full Text PDF