Background: Soil animal communities include more than 40 higher-order taxa, representing over 23% of all described species. These animals have a wide range of feeding sources and contribute to several important soil functions and ecosystem services. Although many studies have assessed macroinvertebrate communities in Brazil, few of them have been published in journals and even fewer have made the data openly available for consultation and further use.
View Article and Find Full Text PDFDespite the strong ecological importance of ectomycorrhizal (ECM) fungi, their vertical distribution remains poorly understood. To our knowledge, ECM structures associated with trees have never been reported in depths below 2 meters. In this study, fine roots and ECM root tips were sampled down to 4-m depth during the digging of two independent pits differing by their water availability.
View Article and Find Full Text PDFTree Physiol
January 2016
Potassium (K) is an important limiting factor of tree growth, but little is known of the effects of K supply on the long-distance transport of photosynthetic carbon (C) in the phloem and of the interaction between K fertilization and drought. We pulse-labelled 2-year-old Eucalyptus grandis L. trees grown in a field trial combining K fertilization (+K and -K) and throughfall exclusion (+W and -W), and we estimated the velocity of C transfer by comparing time lags between the uptake of (13)CO2 and its recovery in trunk CO2 efflux recorded at different heights.
View Article and Find Full Text PDFGlobal climate change is expected to increase the length of drought periods in many tropical regions. Although large amounts of potassium (K) are applied in tropical crops and planted forests, little is known about the interaction between K nutrition and water deficit on the physiological mechanisms governing plant growth. A process-based model (MAESPA) parameterized in a split-plot experiment in Brazil was used to gain insight into the combined effects of K deficiency and water deficit on absorbed radiation (aPAR), gross primary productivity (GPP), and light-use efficiency for carbon assimilation and stem biomass production (LUEC and LUEs ) in Eucalyptus grandis plantations.
View Article and Find Full Text PDFA basic understanding of nutrition effects on the mechanisms involved in tree response to drought is essential under a future drier climate. A large-scale throughfall exclusion experiment was set up in Brazil to gain an insight into the effects of potassium (K) and sodium (Na) nutrition on tree structural and physiological adjustments to water deficit. Regardless of the water supply, K and Na supply greatly increased growth and leaf area index (LAI) of Eucalyptus grandis trees over the first 3 yr after planting.
View Article and Find Full Text PDFAlthough vast areas in tropical regions have weathered soils with low potassium (K) levels, little is known about the effects of K supply on the photosynthetic physiology of trees. This study assessed the effects of K and sodium (Na) supply on the diffusional and biochemical limitations to photosynthesis in Eucalyptus grandis leaves. A field experiment comparing treatments receiving K (+K) or Na (+Na) with a control treatment (C) was set up in a K-deficient soil.
View Article and Find Full Text PDFThe consequences of diversity on belowground processes are still poorly known in tropical forests. The distributions of very fine roots (diameter <1 mm) and fine roots (diameter <3 mm) were studied in a randomized block design close to the harvest age of fast-growing plantations. A replacement series was set up in Brazil with mono-specific Eucalyptus grandis (100E) and Acacia mangium (100A) stands and a mixture with the same stocking density and 50% of each species (50A:50E).
View Article and Find Full Text PDFIntroducing nitrogen-fixing tree species in fast-growing eucalypt plantations has the potential to improve soil nitrogen availability compared with eucalypt monocultures. Whether or not the changes in soil nutrient status and stand structure will lead to mixtures that out-yield monocultures depends on the balance between positive interactions and the negative effects of interspecific competition, and on their effect on carbon (C) uptake and partitioning. We used a C budget approach to quantify growth, C uptake and C partitioning in monocultures of Eucalyptus grandis (W.
View Article and Find Full Text PDFUnderstanding the underlying mechanisms that account for the impact of potassium (K) fertilization and its replacement by sodium (Na) on tree growth is key to improving the management of forest plantations that are expanding over weathered tropical soils with low amounts of exchangeable bases. A complete randomized block design was planted with Eucalyptus grandis (W. Hill ex Maiden) to quantify growth, carbon uptake and carbon partitioning using a carbon budget approach.
View Article and Find Full Text PDFThe dynamics of the main nutrient fluxes of the biological cycle were quantified in a clonal Eucalyptus plantation throughout the whole planted crop rotation: current annual requirements of nutrients, uptake from the soil, internal translocations within trees, return to soil (litterfall and crown leaching) and decomposition in the forest floor. As reported for other species, two growth periods were identified in these short-rotation plantations: (1) a juvenile phase up to canopy closure, during which the uptake of nutrients from the soil reserves supplied most of the current requirements; and (2) a second phase up to harvest, characterized by intense nutrient recycling processes. Internal translocation within trees supplied about 30 % of the annual requirements of N and P from 2 years of age onwards, and about 50 % of the K requirement.
View Article and Find Full Text PDF