Publications by authors named "Jean Paul Chambaret"

High efficiency, broad-band TE-polarization diffraction over a wavelength range centered at 800 nm is obtained by high index gratings placed on a non-corrugated mirror. More than 96% efficiency wide band top-hat diffraction efficiency spectra, as well as more than 1 J/cm(2) damage threshold under 50 fs pulses are demonstrated experimentally. This opens the way to high-efficiency Chirped Pulse Amplification for high average power laser machining by means of all-dielectric structures as well as for ultra-short high energy pulses by means of metal-dielectric structures.

View Article and Find Full Text PDF

We have successfully developed a high-energy, high-repetition rate Ti:sapphire laser system that delivers 33 J before compression at 0.1 Hz. The final booster amplifier is based on a 100 mm diameter Ti:sapphire crystal pumped with 72 J of energy in six beams delivered by three frequency-doubled high-repetition rate Nd:glass lasers.

View Article and Find Full Text PDF

We take advantage of nonlinear properties associated with chi(3) tensor elements in BaF2 cubic crystal to improve the temporal contrast of femtosecond laser pulses. The technique presented is based on cross-polarized wave (XPW) generation. We have obtained a transmission efficiency of 10% and 10(-10) contrast with an input pulse in the millijoule range.

View Article and Find Full Text PDF

We report the measurement of spatiotemporal distortions of an ultrashort pulse in singlet beam expanders. With a simple second-order autocorrelator the temporal broadening of the pulse from 23 to 40 fs, due to propagation time difference (PTD), is determined. The delay due to PTD between different parts of the beam is also measured.

View Article and Find Full Text PDF

Nonlinear elliptical polarization rotation is used to improve the contrast of femtosecond pulses by several orders of magnitude. Using nonlinear induced birefringence in air, we produced cleaned pulses with an energy of a few hundreds of microjoules. This technique presents several major advantages, such as convenience and stability of the setup.

View Article and Find Full Text PDF

Protontherapy is a well-established approach to treat cancer due to the favorable ballistic properties of proton beams. Nevertheless, this treatment is today only possible with large scale accelerator facilities which are very difficult to install at existing hospitals. In this article we report on a new approach for proton acceleration up to energies within the therapeutic window between 60 and 200 MeV by using modern, high intensity and compact laser systems.

View Article and Find Full Text PDF

An adaptive learning loop enhances the efficiency and tuning of high-order harmonic generation. In comparison with simple chirp tuning, we observe a broader tuning range and a twofold to threefold enhancement in integrated photon flux in the cutoff region. The driving pulse temporal phase varies significantly for different tunings and is more complicated than a simple chirp.

View Article and Find Full Text PDF