KRAS G12D mutation has been found in approximately 45% of pancreatic ductal adenocarcinoma (PDAC) cases, making it an attractive therapeutic target. Through structure-based drug design, a series of potent and selective KRAS G12D inhibitors were designed. The lead compound, ERAS-5024, inhibited ERK1/2 phosphorylation and cell proliferation in three-dimensional Cell-Titer Glo assays in AsPC-1 PDAC cells with single-digit nanomolar potency and caused tumor regression in the in vivo efficacy studies.
View Article and Find Full Text PDFActivated ALK and ROS1 tyrosine kinases, resulting from chromosomal rearrangements, occur in a subset of non-small cell lung cancers (NSCLC) as well as other tumor types and their oncogenic relevance as actionable targets has been demonstrated by the efficacy of selective kinase inhibitors such as crizotinib, ceritinib, and alectinib. More recently, low-frequency rearrangements of TRK kinases have been described in NSCLC, colorectal carcinoma, glioblastoma, and Spitzoid melanoma. Entrectinib, whose discovery and preclinical characterization are reported herein, is a novel, potent inhibitor of ALK, ROS1, and, importantly, of TRK family kinases, which shows promise for therapy of tumors bearing oncogenic forms of these proteins.
View Article and Find Full Text PDFSAR studies on the quinolone carboxylic acid class of HIV-1 integrase inhibitors focused on improving the metabolic stability and led to the discovery of 27 and 38.
View Article and Find Full Text PDFThe RAS-RAF-mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)-ERK pathway provides numerous opportunities for targeted oncology therapeutics. In particular, the MEK enzyme is attractive due to high selectivity for its target ERK and the central role that activated ERK plays in driving cell proliferation. The structural, pharmacologic, and pharmacokinetic properties of RDEA119/BAY 869766, an allosteric MEK inhibitor, are presented.
View Article and Find Full Text PDFBioorg Med Chem Lett
February 2007
We have identified and synthesized a series of diaryl substituted pyrazoles as potent antagonists of the chemokine receptor subtype 2. Structure-activity relationship studies directed toward improving the potency led to the discovery of 23 (IC50 = 6 nM).
View Article and Find Full Text PDFWe have identified and synthesized a series of biphenyl-carboxylic acid indanones as allosteric potentiators of the metabotropic glutamate receptor 2. Structure-activity relationship studies directed toward improving the potency and the brain to plasma ratio of the initial lead led to the discovery of 5 and 23 (EC50=111 and 5 nM, respectively).
View Article and Find Full Text PDFModulation of the metabotropic glutamate subtype 5 (mGlu5) receptor may be useful in the treatment of a variety of central nervous system disorders. Herein, we report on the discovery, synthesis, and biological evaluation of dipyridyl amines as small molecule mGlu5 antagonists.
View Article and Find Full Text PDFMetabotropic glutamate receptor 2 (mGluR2) has been implicated in a variety of CNS disorders, including schizophrenia. Disclosed herein is the development of a new series of allosteric potentiators of mGluR2. Structure-activity relationship studies in conjunction with pharmacokinetic data led to the discovery of indole 5, which is active in an animal model for schizophrenia.
View Article and Find Full Text PDFWe have identified and synthesized a brain penetrant propanoic acid as an allosteric potentiator of the metabotropic glutamate receptor 2. Structure-activity relationship studies directed toward improving the potency, level of potentiation and brain penetration led to the discovery of 8 (EC50=1200 nM, 77% potentiation, 119% brain/plasma in rat, 20 mpk i.p.
View Article and Find Full Text PDFBioorg Med Chem Lett
March 2005
We have identified and synthesized a series of phenyl-tetrazolyl and 4-thiopyridyl indanones as allosteric potentiators of the metabotropic glutamate receptor 2. Structure activity relationship studies directed toward improving the potency and level of potentiation, as well as PK properties, led to the discovery of 28 (EC50=186 nM), which displayed activity in a rodent model for schizophrenia.
View Article and Find Full Text PDFThe mGlu5 receptor has been implicated in a number of CNS disorders. Herein, we report on the discovery, synthesis, and biological evaluation of dipyridyl amides as small molecules mGluR5 antagonists.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2004
We have identified and synthesized a series of 4-thiopyridyl acetophenones as positive allosteric potentiators of the metabotropic glutamate receptor 2. Structure-activity relationship studies directed toward replacement of the tetrazole in the initial lead led to the discovery of 16 (EC(50)=340 nM), which showed improved brain penetration over the initial lead.
View Article and Find Full Text PDFWe have identified and synthesized a series of aryl-tetrazoyl acetophenones as positive allosteric potentiators of the metabotropic glutamate receptor 2. Structure activity relationship studies directed toward improving the potency and level of potentiation led to the discovery of 22 (EC(50)=93nM, 128% potentiation).
View Article and Find Full Text PDFPyrimidine methyl anilines as potent and selective mGlu2 potentiators are described. Findings from the structure-activity-relationship investigations are discussed.
View Article and Find Full Text PDFHerein we disclose the discovery of a new class of positive allosteric potentiators of the metabotropic glutamate receptor 2 (mGlu2), phenyl-tetrazolyl acetophenones, e.g. 1-(2-hydroxy-3-propyl-4-[4-[4-(2H-tetrazol-5-yl)phenoxy]butoxy]phenyl) ethanone (4).
View Article and Find Full Text PDFSIB-1663 ([+/-]-7-methoxy-2,3,3a,4,5,6,9b-hexahydro-1H-pyrrolo-[3,2h]-isoquinoline) is a conformationally restricted analog of nicotine (NIC). SIB-1663 exhibited modest affinities to cholinergic receptors (K(i) values displacing the binding of [(3)H]-nicotine (NIC) and [(3)H]-quinuclinidylbenzilate (QNB) binding were 1.0+/-0.
View Article and Find Full Text PDFA series of potent and selective mGluR5 antagonists were synthesized and evaluated in vitro and in vivo. It was found that a pyridyl functionality is a potential replacement for acetonitrile in the lead structure, with 2-pyridyl being most favored. Additionally, the benzoxazole moiety could also be replaced by other heterobicyclic rings such as imidazothiazole.
View Article and Find Full Text PDFIn the present study, we describe the characterization of a positive allosteric modulator at metabotropic glutamate subtype 2 receptors (mGluR2). N-(4-(2-Methoxyphenoxy)-phenyl-N-(2,2,2-trifluoroethylsulfonyl)-pyrid-3-ylmethylamine (LY487379) is a selective positive allosteric modulator at human mGluR2 and is without activity at human mGluR3. Furthermore, LY487379 has no intrinsic agonist or antagonist activity at hmGluR2, as determined by functional guanosine 5'(gamma-[35S]thio)triphosphate ([35S]GTPgammaS) binding, single-cell Ca2+ imaging, and electrophysiological studies.
View Article and Find Full Text PDFSIB-1553A ((+/-)-4-[2-(1-methyl-2-pyrrolidinyl)ethyl]thiophenol HCl) is a neuronal nicotinic acetylcholine receptor (nAChR) ligand which is active in rodent and primate models of cognition. In functional assays, SIB-1553A exhibits marked subtype selectivity for nAChRs as compared to nicotine. In addition SIB-1553A also exhibits affinities to histaminergic (H3) and serotonergic (5-HT1 and 5HT2) receptors and sigma binding sites.
View Article and Find Full Text PDFSIB-1553A ((+/-)-4-[2-(1-methyl-2-pyrrolidinyl)ethyl]thio]phenol HCl) is a neuronal nicotinic acetylcholine receptor (nAChR) ligand which displaced the binding of [3H]nicotine (NIC) to the rat brain nAChRs with an IC(50) value of 110 nM with no appreciable affinity to the alpha7 nAhRs. SIB-1553A showed modest affinity for histaminergic (H3) and serotonergic (5-HT1 and 5-HT2) receptors, and sigma binding sites. In calcium flux assays, SIB-1553A (0.
View Article and Find Full Text PDFGroup II mGlu receptor agonists (eg LY379268 and LY354740) have been shown to reverse many of the behavioral responses to PCP as well as glutamate release elicited by PCP and ketamine. In the present set of experiments, we used in vivo microdialysis to show that, in addition to reversing PCP- and ketamine-evoked glutamate release, group II mGlu receptor stimulation also prevents ketamine-evoked norepinephrine (NE) release. Pretreating animals with the mixed 2/3 metabotropic glutamate (mGlu2/3) receptor agonist LY379268 (0.
View Article and Find Full Text PDF