Four new metallophosphonates M(HO)(POCHOH)·(HO) (M = Mn, Co, Cu, Zn) were obtained as single crystal and polycrystalline powders by hydrothermal synthesis from the precursors 6-hydroxy-2-naphthylphosphonic acid and the corresponding metal salts. These analogous hybrids crystalized in the space group P12/c1 in a lamellar structure. Their layered structures consisted of inorganic [M(HO)(POC)] layers stacked with organic bilayers of 6-hydroxy-2-naphthyl moieties "HO-CH" and free water molecules.
View Article and Find Full Text PDFThree novel silver-based metal-organic frameworks materials, which were synthesized from either 3-phosphono or 4-phosphonobenzoic acid and silver nitrate, are reported. The novel hybrids were synthesized under hydrothermal conditions; the pH of the reaction media was controlled by adding different quantities of urea thereby producing different topologies. Compound 1 (Ag3(4-PO3-C6H4-COO)), synthesized in the presence of urea, exhibits a compact 3D structure in which both phosphonic acid and carboxylic acid functional groups are linked to the silver-based inorganic network.
View Article and Find Full Text PDFSynthesis of thiophene-2,5-diphosphonic acid 2 is reported, and its use for synthesis of the original pristine materials Mn(2)(O(3)P-C(4)H(2)S-PO(3))·2H(2)O 3 is reported. The structure of material 3 has been fully resolved from single-crystal X-ray diffraction. Mn(2)(O(3)P-C(4)H(2)S-PO(3))·2H(2)O 3 crystallizes in a monoclinic cell (space group P2) with the following parameters: a = 11.
View Article and Find Full Text PDFMicrocrystalline single-phase strontium oxotellurate(IV) monohydrate, SrTeO(3)(H(2)O), was obtained by microwave-assisted hydrothermal synthesis under alkaline conditions at 180 °C for 30 min. A temperature of 220 °C and longer reaction times led to single crystal growth of this material. The crystal structure of SrTeO(3)(H(2)O) was determined from single crystal X-ray diffraction data: P2(1)/c, Z = 4, a = 7.
View Article and Find Full Text PDFA new 3D rare-earth hybrid material Eu(p-O(3)PC(6)H(4)COO) has been synthesised by a hydrothermal route from Eu(NO(3))(3) x 5 H(2)O and the rigid precursor, 4-phosphonobenzoic acid. The structure of Eu(p-O(3)PC(6)H(4)COO) has been solved by X-ray diffraction on a powder sample and is described as an inorganic network in which both carboxylic and phosphonic acid groups are linked to Eu ions forming a three-dimensional architecture. Thermal analysis performed on this compound has underlined its remarkable stability up to 510 degrees C and an optical study has been conducted to examine its luminescence properties that have been related to the structure of the material.
View Article and Find Full Text PDFSymmetrically substituted oligophenylenevinylene (OPV) derivatives bearing terminal p-nitrophenylhydrazone groups have been prepared and used for the synthesis of dumbbell-shaped bis(pyrazolino[60]fullerene)-OPV systems. In these triad arrays, the OPV-type fluorescence is dramatically quenched as a consequence of ultrafast OPV-->C60 singlet energy transfer. In its turn the fullerene singlet state is quenched by pyrazoline-->C60 electron transfer, in line with the behavior of the corresponding reference fullerene molecule.
View Article and Find Full Text PDF