Gatemons are superconducting qubits resembling transmons, with a gate-tunable semiconducting weak link as the Josephson element. Here, we report a gatemon device featuring an aluminum microwave circuit on a Ge/SiGe heterostructure embedding a Ge quantum well. Owing to the superconducting proximity effect, the high-mobility two-dimensional hole gas confined in this well provides a gate-tunable superconducting weak link between two Al contacts.
View Article and Find Full Text PDFOver the last 30 years, group-IV semiconductors have been intensely investigated in the quest for a fundamental direct bandgap semiconductor that could yield the last missing piece of the Si Photonics toolbox: a continuous-wave Si-based laser. Along this path, it has been demonstrated that the electronic band structure of the GeSn/SiGeSn heterostructures can be tuned into a direct bandgap quantum structure providing optical gain for lasing. In this paper, we present a versatile electrically pumped, continuous-wave laser emitting at a near-infrared wavelength of 2.
View Article and Find Full Text PDFThis article presents low-loss mid-infrared waveguides fabricated on a Ge-rich SiGe strain-relaxed buffer grown on an industrial-scale 200 mm wafer, with propagation losses below 0.5 dB/cm for 5-7 µm wavelengths and below 5 dB/cm up to 11 µm. Investigation reveals free-carrier absorption as the primary loss factor for 5-6.
View Article and Find Full Text PDFSpatially resolved x-ray fluorescence (XRF) based analysis employing incident beam sizes in the low micrometer range (XRF) is widely used to study lateral composition changes of various types of microstructured samples. However, up to now the quantitative analysis of such experimental datasets could only be realized employing adequate calibration or reference specimen. In this work, we extent the applicability of the so-called reference-free XRF approach to enable reference-freeXRF analysis.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
October 2023
We report the resonantly enhanced radiative emission from a single SiGe quantum dot (QD), which is deterministically embedded into a bichromatic photonic crystal resonator (PhCR) at the position of its largest modal electric field by a scalable method. By optimizing our molecular beam epitaxy (MBE) growth technique, we were able to reduce the amount of Ge within the whole resonator to obtain an absolute minimum of exactly one QD, accurately positioned by lithographic methods relative to the PhCR, and an otherwise flat, a few monolayer thin, Ge wetting layer (WL). With this method, record quality (Q) factors for QD-loaded PhCRs up to Q ∼ 10 are achieved.
View Article and Find Full Text PDFUsing cavity ring-down spectroscopy to probe R-branch transitions of CO in N_{2}, we show that the spectral core of the line shapes associated with the first few rotational quantum numbers, J, can be accurately modeled using a sophisticated line profile, provided that a pressure-dependent line area is introduced. This correction vanishes as J increases and is always negligible in CO-He mixtures. The results are supported by molecular dynamics simulations attributing the effect to non-Markovian behavior of collisions at short times.
View Article and Find Full Text PDFSi Ge is a key material in modern complementary metal-oxide-semiconductor and bipolar devices. However, despite considerable efforts in metal-silicide and -germanide compound material systems, reliability concerns have so far hindered the implementation of metal-Si Ge junctions that are vital for diverse emerging "More than Moore" and quantum computing paradigms. In this respect, the systematic structural and electronic properties of Al-Si Ge heterostructures, obtained from a thermally induced exchange between ultra-thin Si Ge nanosheets and Al layers are reported.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2022
Tin segregation in GeSn alloys is one of the major problems potentially hindering the use of this material in devices. GeSn microdisks fabricated from layers with Sn concentrations up to 16.9% underwent here annealing at temperatures as high as 400 °C for 20 min without Sn segregation, in contrast with the full segregation observed in the corresponding blanket layers annealed simultaneously.
View Article and Find Full Text PDFGeSn alloys are promising materials for CMOS-compatible mid-infrared lasers manufacturing. Indeed, Sn alloying and tensile strain can transform them into direct bandgap semiconductors. This growing laser technology however suffers from a number of limitations, such as poor optical confinement, lack of strain, thermal, and defects management, all of which are poorly discussed in the literature.
View Article and Find Full Text PDFThe epitaxy of III-V semiconductors on silicon substrates remains challenging because of lattice parameter and material polarity differences. In this work, we report on the Metal Organic Chemical Vapor Deposition (MOCVD) and characterization of InAs/GaAs Quantum Dots (QDs) epitaxially grown on quasi-nominal 300 mm Ge/Si(001) and GaAs(001) substrates. QD properties were studied by Atomic Force Microscopy (AFM) and Photoluminescence (PL) spectroscopy.
View Article and Find Full Text PDFWe demonstrate coherent supercontinuum generation spanning over an octave from a silicon germanium-on-silicon waveguide using ∼200 pulses at a wavelength of 4 µm. The waveguide is engineered to provide low all-normal dispersion in the TM polarization. We validate the coherence of the generated supercontinuum via simulations, with a high degree of coherence across the entire spectrum.
View Article and Find Full Text PDFNi-based intermetallics are promising materials for forming efficient contacts in GeSn-based Si photonic devices. However, the role that Sn might have during the Ni/GeSn solid-state reaction (SSR) is not fully understood. A comprehensive analysis focused on Sn segregation during the Ni/GeSn SSR was carried out.
View Article and Find Full Text PDFQuantum coherence plays an essential role in diverse natural phenomena and technological applications. The unavoidable coupling of the quantum system to an uncontrolled environment incurs dissipation that is often described using the secular approximation. Here we probe the limit of this approximation in the rotational relaxation of molecules due to thermal collisions by using the laser-kicked molecular rotor as a model system.
View Article and Find Full Text PDFWe demonstrate lasing up to 230 K in a GeSn heterostructure micro-disk cavity. The GeSn 16.0% optically active layer was grown on a step-graded GeSn buffer, limiting the density of misfit dislocations.
View Article and Find Full Text PDFGrowth and characterization of advanced group IV semiconductor materials with CMOS-compatible applications are demonstrated, both in photonics. The investigated GeSn/SiGeSn heterostructures combine direct bandgap GeSn active layers with indirect gap ternary SiGeSn claddings, a design proven its worth already decades ago in the III-V material system. Different types of double heterostructures and multi-quantum wells (MQWs) are epitaxially grown with varying well thicknesses and barriers.
View Article and Find Full Text PDFWe present a theoretical study of the effects of collisions with water vapor molecules on the absorption, around 4 μm, in both the high frequency wing of the CO ν band and the collision-induced fundamental band of N. Calculations are made for the very first time, showing that predictions based on classical molecular dynamics simulations enable, without adjustment of any parameter, very satisfactory agreement with the few available experimental determinations. This opens the route for a future study in which accurate temperature-dependent (semi-empirical) models will be built and checked through comparisons between computed and measured atmospheric spectra.
View Article and Find Full Text PDFThe chemical composition of four SiGe layers grown on silicon was determined from quantitative scanning transmission electron microscopy (STEM). The chemical analysis was performed by a comparison of the high-angle annular dark field (HAADF) intensity with multislice simulations. It could be shown that amorphous surface layers originating from the preparation process by focused-ion beam (FIB) at 30 kV have a strong influence on the quantification: the local specimen thickness is overestimated by approximately a factor of two, and the germanium concentration is substantially underestimated.
View Article and Find Full Text PDFWe report experimental observations of rotated echoes of alignment induced by a pair of time-delayed and polarization-skewed femtosecond laser pulses interacting with an ensemble of molecular rotors. Rotated fractional echoes, rotated high order echoes and rotated imaginary echoes are directly visualized by using the technique of coincident Coulomb explosion imaging. We show that the echo phenomenon not only exhibits temporal recurrences but also spatial rotations determined by the polarization of the time-delayed second pulse.
View Article and Find Full Text PDFGermanium photodetectors are considered to be mature components in the silicon photonics device library. They are critical for applications in sensing, communications, or optical interconnects. In this work, we report on design, fabrication, and experimental demonstration of an integrated waveguide PIN photodiode architecture that calls upon lateral double Silicon/Germanium/Silicon (Si/Ge/Si) heterojunctions.
View Article and Find Full Text PDFUsing previously recorded spectra of HCl diluted in Ar gas at room temperature for several pressure conditions, we show that the absorptions in between successive P and R transitions are significantly different from those predicted using purely Lorentzian line shapes. Direct theoretical predictions of the spectra are also made using requantized classical molecular dynamics simulations and an input HCl-Ar interaction potential. They provide the time evolution of the dipole auto-correlation function (DAF) whose Fourier-Laplace transform yields the absorption spectrum.
View Article and Find Full Text PDFSiGeSn ternaries are grown on Ge-buffered Si wafers incorporating Si or Sn contents of up to 15 at%. The ternaries exhibit layer thicknesses up to 600 nm, while maintaining a high crystalline quality. Tuning of stoichiometry and strain, as shown by means of absorption measurements, allows bandgap engineering in the short-wave infrared range of up to about 2.
View Article and Find Full Text PDFIn recent years, several femtosecond laser techniques have been developed that can make gas molecules rotate extremely fast, whereas the gas stays translationally cold. Herein we use molecular-dynamics simulations to investigate the collisional dynamics of gases of such molecules ("superrotors"). We found that the common route of superrotors to equilibrium is rather generic.
View Article and Find Full Text PDF