Publications by authors named "Jean Michel Grienenberger"

For 8 years, it was not understood why certain genes of plant mitochondria contain CGG (arginine) codons at positions where tryptophan codons (UGG) are present in the corresponding genes of nonplant species. Identification and sequencing of a tRNA(Trp) gene showed that it is not able to decode the CGG codon. Analysis of different discrepancies in the sequences of plant mitochondrial proteins prompted us to determine directly the corresponding RNA sequences.

View Article and Find Full Text PDF

Three reading frames called ccmF(N1), ccmF(N2), and ccmF(c) are found in the mitochondrial genome of Arabidopsis. These sequences are similar to regions of the bacterial gene ccmF involved in cytochrome c maturation. ccmF genes are always absent from animal and fungi genomes but are found in mitochondrial genomes of land plant and several evolutionary distant eukaryotes.

View Article and Find Full Text PDF

ABC transporters make a large and diverse family of proteins found in all phylae. AtCCMA is the nucleotide binding domain of a novel Arabidopsis mitochondrial ABC transporter. It is encoded in the nucleus and imported into mitochondria.

View Article and Find Full Text PDF

The maturation of c-type cytochromes requires the covalent ligation of the heme cofactor to reduced cysteines of the CXXCH motif of apocytochromes. In contrast to mitochondria of other eukaryotes, plant mitochondria follow a pathway close to that found in alpha- and gamma-proteobacteria. We identified a nuclear-encoded protein, AtCCMH, the Arabidopsis thaliana ortholog of bacterial CcmH/CycL proteins.

View Article and Find Full Text PDF

In higher plant mitochondria, post-transcriptional C to U conversion known as editing mostly affects mRNAs. However, three tRNAs were also shown to be edited. Among them, three editing sites were identified in larch mitochondrial tRNA(His).

View Article and Find Full Text PDF

Genomic projects heavily depend on genome annotations and are limited by the current deficiencies in the published predictions of gene structure and function. It follows that, improved annotation will allow better data mining of genomes, and more secure planning and design of experiments. The purpose of the GeneFarm project is to obtain homogeneous, reliable, documented and traceable annotations for Arabidopsis nuclear genes and gene products, and to enter them into an added-value database.

View Article and Find Full Text PDF

Plant mitochondria contain three rRNA genes, rrn26, rrn18 and rrn5, the latter two being co-transcribed. We have recently identified a polynucleotide phosphorylase-like protein (AtmtPNPase) in Arabidopsis mitochondria. Plants downregulated for AtmtPNPase expression (PNP-plants) accumulate 18S rRNA species polyadenylated at internal sites, indicating that AtmtPNPase is involved in 18S rRNA degradation.

View Article and Find Full Text PDF

In land plant mitochondria, c-type cytochromes are assembled via a mechanism similar to that found in Gram-negative bacteria and different from that used by mitochondria from other eukaryotes. The wheat mitochondrial genome encodes CCM (for cytochrome c maturation) proteins, among them CcmF(C), a protein similar to the C-terminal part of the bacterial CcmF. The gene is transcribed into a 1.

View Article and Find Full Text PDF

In plant mitochondria, transcription proceeds well beyond the region that will become mature 3' extremities of mRNAs, and the mechanisms of 3' maturation are largely unknown. Here, we show the involvement of two exoribonucleases, AtmtPNPase and AtmtRNaseII, in the 3' processing of atp9 mRNAs in Arabidopsis thaliana mitochondria. Down-regulation of AtmtPNPase results in the accumulation of pretranscripts of several times the size of mature atp9 mRNAs, indicating that 3' processing of these transcripts is performed mainly exonucleolytically by AtmtPNPase.

View Article and Find Full Text PDF

A gene (rps2) coding for ribosomal protein S2 (RPS2) is present in the mitochondrial (mt) genome of several monocot plants, but absent from the mtDNA of dicots. Confirming that in dicot plants the corresponding gene has been transferred to the nucleus, a corresponding Arabidopsis thaliana nuclear gene was identified that codes for mitochondrial RPS2. As several yeast and mammalian genes coding for mt ribosomal proteins, the Arabidopsis RPS2 apparently has no N-terminal targeting sequence.

View Article and Find Full Text PDF

Expression of higher plant mitochondrial (mt) genes is regulated at the transcriptional, posttranscriptional, and translational levels, but the vast majority of the mtDNA and RNA-binding proteins involved remain to be identified. Plant mt single-stranded nucleic acid-binding proteins were purified by affinity chromatography, and corresponding genes have been identified. A majority of these proteins belong to a family of RNA-binding proteins characterized by the presence of an N-terminal RNA-recognition motif (RRM) sequence.

View Article and Find Full Text PDF