Publications by authors named "Jean Marie Teulon"

Influenza virus genome encapsidation is essential for the formation of a helical viral ribonucleoprotein (vRNP) complex composed of nucleoproteins (NP), the trimeric polymerase, and the viral genome. Although low-resolution vRNP structures are available, it remains unclear how the viral RNA is encapsidated and how NPs assemble into the helical filament specific of influenza vRNPs. In this study, we established a biological tool, the RNP-like particles assembled from recombinant influenza A virus NP and synthetic RNA, and we present the first subnanometric cryo-electron microscopy structure of the helical NP-RNA complex (8.

View Article and Find Full Text PDF

The plasticity and growth of plant cell walls (CWs) remain poorly understood at the molecular level. In this work, we used atomic force microscopy (AFM) to observe elastic responses of the root transition zone of 4-day-old Arabidopsis thaliana wild-type and almt1-mutant seedlings grown under Fe or Al stresses. Elastic parameters were deduced from force-distance curve measurements using the trimechanic-3PCS framework.

View Article and Find Full Text PDF
Article Synopsis
  • Cry11Aa and Cyt1Aa are toxins from Bacillus thuringiensis subsp. israelensis, studied for their toxic and synergistic effects.
  • The research utilized atomic force microscopy and L-weight filtering to analyze the structures of their crystals, confirming the sizes align with x-ray crystallography findings.
  • The study indicates that Cry11Aa may be more effective than Cyt1Aa due to its favorable structural features that promote multimerization, enhancing its toxicity.
View Article and Find Full Text PDF

Stiffness plays a central action in plant cell extension. Here, we present a protocol to detect changes in stiffness on the external epidermal cell wall of living plant roots using atomic force microscopy (AFM). We provide generalized instructions for collecting force-distance curves and analysis of stiffness using contact-based mechanical model.

View Article and Find Full Text PDF

Measuring the structural stiffness aims to reveal the impact of nanostructured components or various physiological circumstances on the elastic response of material to an external indentation. With a pyramidal tip at a nano-scale, we employed the atomic force microscopy (AFM) to indent the surfaces of two compositions of polyacrylamide gels with different softness and seedling roots of . We found that the stiffness-depth curve derived from the measured force exhibits a heterogeneous character in elasticity.

View Article and Find Full Text PDF

Cry11Aa and Cry11Ba are the two most potent toxins produced by mosquitocidal Bacillus thuringiensis subsp. israelensis and jegathesan, respectively. The toxins naturally crystallize within the host; however, the crystals are too small for structure determination at synchrotron sources.

View Article and Find Full Text PDF
Article Synopsis
  • - Deinococcus radiodurans is a unique bacterium known for its strong resistance to DNA damage, which triggers significant changes in its gene expression, particularly activating specific DNA Damage Response genes.
  • - The DdrC protein, one of these critical genes, is quickly activated after exposure to radiation and plays a key role in protecting and reorganizing the bacterium's DNA.
  • - Recent studies have detailed the structure of DdrC and its ability to bind and compact DNA, indicating its potential role in helping the bacterium recover from severe DNA damage by maintaining genome integrity during repair.
View Article and Find Full Text PDF

Tardigrades are remarkable for their ability to survive harsh stress conditions as diverse as extreme temperature and desiccation. The molecular mechanisms that confer this unusual resistance to physical stress remain unknown. Recently, tardigrade-unique intrinsically disordered proteins have been shown to play an essential role in tardigrade anhydrobiosis.

View Article and Find Full Text PDF

Morniflumate diniflumate, a molecular compound involving niflumic acid and its β-morpholino ethyl ester (morniflumate) in the mole ratio 2:1, is found to crystallize in a triclinic P - 1 space group with a unit-cell volume of 2203.4(5) Å. It is a cocrystal between a morniflumate niflumate salt and a neutral niflumic acid molecule.

View Article and Find Full Text PDF

The proton pump transmembrane protein bacteriorhodopsin was successfully incorporated into planar floating lipid bilayers in gel and fluid phases, by applying a detergent-mediated incorporation method. The method was optimized on single supported bilayers by using quartz crystal microbalance, atomic force and fluorescence microscopy techniques. Neutron and X-ray reflectometry were used on both single and floating bilayers with the aim of determining the structure and composition of this membrane-protein system before and after protein reconstitution at sub-nanometer resolution.

View Article and Find Full Text PDF

The Deinococcus radiodurans protein HU (DrHU) was shown to be critical for nucleoid activities, yet its functional and structural properties remain largely unexplored. We have applied atomic force microscopy (AFM) imaging to study DrHU binding to pUC19-DNA in vitro and analyzed the topographic structures formed at the nanoscale. At the single-molecule level, AFM imaging allows visualization of super-helical turns on naked DNA surfaces and characterization of free DrHU molecules observed as homodimers.

View Article and Find Full Text PDF

Bacteria employ several mechanisms, and most notably secretion systems, to translocate effectors from the cytoplasm to the extracellular environment or the cell surface. Pseudomonas aeruginosa widely employs secretion machineries such as the Type III Secretion System to support virulence and cytotoxicity. However, recently identified P.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are recently discovered transcripts that regulate vital cellular processes, such as cellular differentiation and DNA replication, and are crucially connected to diseases. Although the 3D structures of lncRNAs are key determinants of their function, the unprecedented molecular complexity of lncRNAs has so far precluded their 3D structural characterization at high resolution. It is thus paramount to develop novel approaches for biochemical and biophysical characterization of these challenging targets.

View Article and Find Full Text PDF

Cyt1Aa is the one of four crystalline protoxins produced by mosquitocidal bacterium Bacillus thuringiensis israelensis (Bti) that has been shown to delay the evolution of insect resistance in the field. Limiting our understanding of Bti efficacy and the path to improved toxicity and spectrum has been ignorance of how Cyt1Aa crystallizes in vivo and of its mechanism of toxicity. Here, we use serial femtosecond crystallography to determine the Cyt1Aa protoxin structure from sub-micron-sized crystals produced in Bti.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are key regulatory molecules, but unlike with other RNAs, the direct link between their tertiary structure motifs and their function has proven elusive. Here we report structural and functional studies of human maternally expressed gene 3 (MEG3), a tumor suppressor lncRNA that modulates the p53 response. We found that, in an evolutionary conserved region of MEG3, two distal motifs interact by base complementarity to form alternative, mutually exclusive pseudoknot structures ("kissing loops").

View Article and Find Full Text PDF

The perpetuation of inflammation is an important pathophysiological contributor to the global medical burden. Chronic inflammation is promoted by non-programmed cell death; however, how inflammation is instigated, its cellular and molecular mediators, and its therapeutic value are poorly defined. Here we use mouse models of atherosclerosis-a major underlying cause of mortality worldwide-to demonstrate that extracellular histone H4-mediated membrane lysis of smooth muscle cells (SMCs) triggers arterial tissue damage and inflammation.

View Article and Find Full Text PDF
Article Synopsis
  • The type three secretion system (T3SS) is a bacterial mechanism that acts like a needle to inject toxins into host cells, and its structure is crucial for effective toxin delivery.
  • Research combined various methods to analyze the T3SS needle and its main protein, PscF, revealing that its structural design affects needle assembly and function.
  • Mutations in the PscF protein could hinder needle formation but still allow for some cytotoxicity, indicating that targeting the T3SS needle could lead to new treatments that inhibit bacterial virulence.
View Article and Find Full Text PDF

Nanoparticles are defined as elementary particles with a size between 1 and 100 nm for at least 50% (in number). They can be made from natural materials, or manufactured. Due to their small sizes, novel toxicological issues are raised and thus determining the accurate size of these nanoparticles is a major challenge.

View Article and Find Full Text PDF

We present a procedure that allows a reliable determination of the elastic (Young's) modulus of soft samples, including living cells, by atomic force microscopy (AFM). The standardized nanomechanical AFM procedure (SNAP) ensures the precise adjustment of the AFM optical lever system, a prerequisite for all kinds of force spectroscopy methods, to obtain reliable values independent of the instrument, laboratory and operator. Measurements of soft hydrogel samples with a well-defined elastic modulus using different AFMs revealed that the uncertainties in the determination of the deflection sensitivity and subsequently cantilever's spring constant were the main sources of error.

View Article and Find Full Text PDF
Article Synopsis
  • - Environmental factors significantly affect how plants grow, with phosphate (Pi) deficiency leading to reduced root growth in various species.
  • - The study identifies two distinct pathways for how Arabidopsis thaliana senses low Pi, with STOP1 and ALMT1 influencing cell elongation and LPR1 affecting cell proliferation.
  • - The research reveals that STOP1 and ALMT1 form a signaling system for low Pi conditions, while also highlighting a surprising role of malate in inhibiting root cell wall expansion.
View Article and Find Full Text PDF

A recurrent interrogation when imaging soft biomolecules using atomic force microscopy (AFM) is the putative deformation of molecules leading to a bias in recording true topographical surfaces. Deformation of biomolecules comes from three sources: sample instability, adsorption to the imaging substrate, and crushing under tip pressure. To disentangle these causes, we measured the maximum height of a well-known biomolecule, the tobacco mosaic virus (TMV), under eight different experimental conditions positing that the maximum height value is a specific indicator of sample deformations.

View Article and Find Full Text PDF

Background: Synchrotron radiation facilities are pillars of modern structural biology. Small-Angle X-ray scattering performed at synchrotron sources is often used to characterize the shape of biological macromolecules. A major challenge with high-energy X-ray beam on such macromolecules is the perturbation of sample due to radiation damage.

View Article and Find Full Text PDF

Image visibility is a central issue in analyzing all kinds of microscopic images. An increase of intensity contrast helps to raise the image visibility, thereby to reveal fine image features. Accordingly, a proper evaluation of results with current imaging parameters can be used for feedback on future imaging experiments.

View Article and Find Full Text PDF

Tobacco mosaic virus particles can be rapidly assembled into 3D-domains by capillary flow-driven alignment at the triple contact-line of an evaporating droplet. Virus particles of ∼150 Å diameter can be resolved within individual domains at the outer rim of the "coffee-ring" type residue by atomic force microscopy. The crystalline domains can also be probed by X-ray microdiffraction techniques.

View Article and Find Full Text PDF

Tienoxolol is a pharmacologically active molecule designed with the functional groups ketothiophene, alkyl benzoate and arylpropanolamine so as to combine a diuretic and a β-adrenoreceptor antagonist into a single molecule. Its degradation products generated in several stress media have been determined by high-pressure liquid chromatography (HPLC) coupled to a hybrid mass spectrometer with a triple quadrupole-linear trap. A Polaris(®) column with a C18-A stationary phase and a linear gradient mobile phase composed of a mixture of trifluoroacetic acid 1% (v/v) and acetonitrile allowed for optimal separation.

View Article and Find Full Text PDF