Publications by authors named "Jean Marc Egly"

The plasticity of cancer cells facilitates their ability to adopt heterogeneous differentiation states, posing a significant challenge to therapeutic interventions. Specific gene expression programs, driven in part by super-enhancers (SEs), underlie cancer cell states. Here we successfully inhibit SE-driven transcription in phenotypically distinct metastatic melanoma cells using next-generation synthetic ecteinascidins.

View Article and Find Full Text PDF

Lurbinectedin is a selective inhibitor of oncogenic transcription approved for the treatment of adult patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy. Preclinical data provide evidence for lurbinectedin exerting its actions in a unique manner that involves oncogenic transcription inhibition, DNA damage, reshaping of the tumor microenvironment, and inducing anticancer immunity. Understanding the mechanism of action (MoA) has facilitated the rational combination of lurbinectedin and anticancer therapies with complementary modes of action, in order to obtain synergistic effects that could potentially lead to improved efficacy.

View Article and Find Full Text PDF
Article Synopsis
  • Eukaryotic cells have developed sophisticated mechanisms to manage genotoxic stress, which is damage to DNA.
  • Cockayne syndrome (CS) is a rare disease caused by mutations in the CSA and CSB genes, initially thought to be solely responsible for DNA repair.
  • Recent findings reveal that CSA and CSB are crucial regulators that coordinate DNA repair, transcription, and cell division by ubiquitinating target proteins, highlighting the role of these proteins in the complex nature of CS.
View Article and Find Full Text PDF
Article Synopsis
  • * Lack of EXD2 nuclease impairs recovery of mRNA synthesis and reduces cell survival after UV exposure, while its overexpression (except for a mutated version) restores both RRS and cell viability.
  • * The research shows that UV radiation causes EXD2 to move from mitochondria to the nucleus, where it interacts with RNA Polymerase II to degrade freshly synthesized mRNA, aiding transcription restart once DNA repair is completed.
View Article and Find Full Text PDF
Article Synopsis
  • ALT (Alternative Lengthening of Telomeres) uses a recombination mechanism to maintain telomere length without telomerase, though the initiation of ALT is still not fully understood.
  • Research shows that depleting TERRA, a type of RNA found at telomeres, impacts the formation and maintenance of ALT structures like PML bodies and telomere length.
  • TERRA interacts with DNA repair proteins, particularly XPF, which is crucial for activating a DNA damage response that facilitates homologous recombination and telomere lengthening in ALT cells.
View Article and Find Full Text PDF
Article Synopsis
  • The original nine hallmarks of ageing proposed in 2013 include genomic instability, telomere attrition, epigenetic alterations, and others, which have shaped current aging research.
  • In the last decade, new hallmarks such as compromised autophagy, microbiome disturbance, and inflammation have been identified, expanding our understanding of aging.
  • Combining the old and new hallmarks could enhance our knowledge of aging and age-related diseases, potentially informing interventions for healthier aging in the elderly.
View Article and Find Full Text PDF

The helicase XPD is known as a key subunit of the DNA repair/transcription factor TFIIH. However, here, we report that XPD, independently to other TFIIH subunits, can localize with the motor kinesin Eg5 to mitotic spindles and the midbodies of human cells. The XPD/Eg5 partnership is promoted upon phosphorylation of Eg5/T926 by the kinase CDK1, and conversely, it is reduced once Eg5/S1033 is phosphorylated by NEK6, a mitotic kinase that also targets XPD at T425.

View Article and Find Full Text PDF

Small-Cell Lung Cancer (SCLC) is an aggressive neuroendocrine malignancy with a poor prognosis. Here, we focus on the neuroendocrine SCLC subtypes, SCLC-A and SCLC-N, whose transcription addiction was driven by ASCL1 and NEUROD1 transcription factors which target E-box motifs to activate up to 40% of total genes, the promoters of which are maintained in a steadily open chromatin environment according to ATAC and H3K27Ac signatures. This leverage is used by the marine agent lurbinectedin, which preferentially targets the CpG islands located downstream of the transcription start site, thus arresting elongating RNAPII and promoting its degradation.

View Article and Find Full Text PDF

Melanoma cell phenotype switching between differentiated melanocytic and undifferentiated mesenchymal-like states drives metastasis and drug resistance. CDK7 is the serine/threonine kinase of the basal transcription factor TFIIH. We show that dedifferentiation of melanocytic-type melanoma cells into mesenchymal-like cells and acquisition of tolerance to targeted therapies is achieved through chronic inhibition of CDK7.

View Article and Find Full Text PDF

In eukaryotes, transcription of protein-coding genes requires the assembly at core promoters of a large preinitiation machinery containing RNA polymerase II (RNAPII) and general transcription factors (GTFs). Transcription is potentiated by regulatory elements called enhancers, which are recognized by specific DNA-binding transcription factors that recruit cofactors and convey, following chromatin remodeling, the activating cues to the preinitiation complex. This review summarizes nearly five decades of work on transcription initiation by describing the sequential recruitment of diverse molecular players including the GTFs, the Mediator complex, and DNA repair factors that support RNAPII to enable RNA synthesis.

View Article and Find Full Text PDF

Cytokinesis is monitored by a molecular machinery that promotes the degradation of the intercellular bridge, a transient protein structure connecting the two daughter cells. Here, we found that CSA and CSB, primarily defined as DNA repair factors, are located at the midbody, a transient structure in the middle of the intercellular bridge, where they recruit CUL4 and MDM2 ubiquitin ligases and the proteasome. As a part of this molecular machinery, CSA and CSB contribute to the ubiquitination and the degradation of proteins such as PRC1, the Protein Regulator of Cytokinesis, to ensure the correct separation of the two daughter cells.

View Article and Find Full Text PDF

The XPD helicase is a central component of the general transcription factor TFIIH which plays major roles in transcription and nucleotide excision repair (NER). Here we present the high-resolution crystal structure of the Arch domain of XPD with its interaction partner MAT1, a central component of the CDK activating kinase complex. The analysis of the interface led to the identification of amino acid residues that are crucial for the MAT1-XPD interaction.

View Article and Find Full Text PDF

Background: Trichothiodystrophy (TTD) is a rare autosomal recessive disorder characterised by brittle hairs and various systemic symptoms, including photosensitivity and ichthyosis. While photosensitivity could result from DNA repair defects, other TTD clinical features might be due to deficiencies in certain molecular processes.

Objectives: The aim of this study was to understand the pathophysiological mechanism of ichthyosis in TTD, focused on the transcriptional dysregulation.

View Article and Find Full Text PDF

Cockayne syndrome (CS) is a rare genetic disorder caused by mutations (dysfunction) in CSA and CSB. CS patients exhibit mild photosensitivity and severe neurological problems. Currently, CS diagnosis is based on the inefficiency of CS cells to recover RNA synthesis upon genotoxic (UV) stress.

View Article and Find Full Text PDF

In the Acknowledgements section of the paper the authors neglected to mention that the study was supported by a grant from the National Human Genome Research Institute (NHGRI) UM1HG007301 (S.H., M.

View Article and Find Full Text PDF

Purpose: Mediator is a multiprotein complex that allows the transfer of genetic information from DNA binding proteins to the RNA polymerase II during transcription initiation. MED12L is a subunit of the kinase module, which is one of the four subcomplexes of the mediator complex. Other subunits of the kinase module have been already implicated in intellectual disability, namely MED12, MED13L, MED13, and CDK19.

View Article and Find Full Text PDF

In eukaryotes, the general transcription factors TFIIE and TFIIH assemble at the transcription start site with RNA Polymerase II. However, the mechanism by which these transcription factors incorporate the preinitiation complex and coordinate their action during RNA polymerase II transcription remains elusive. Here we show that the TFIIEα and TFIIEβ subunits anchor the TFIIH kinase module (CAK) within the preinitiation complex.

View Article and Find Full Text PDF

The TFIIH subunit XPB is involved in combined Xeroderma Pigmentosum and Cockayne syndrome (XP-B/CS). Our analyses reveal that XPB interacts functionally with KAT2A, a histone acetyltransferase (HAT) that belongs to the hSAGA and hATAC complexes. XPB interacts with KAT2A-containing complexes on chromatin and an XP-B/CS mutation specifically elicits KAT2A-mediated large-scale chromatin decondensation.

View Article and Find Full Text PDF

A small nuclear protein, C1D, has roles in various cellular processes, transcription regulation, genome stability surveillance, DNA repair and RNA processing, all of which are required to maintain the host life cycles. In the previous report, C1D directly interacts with XPB, a component of the nucleotide excision repair complex, and C1D knockdown reduced cell survival of 27-1 cells, CHO derivative cells, after UV irradiation. To find out the role of C1D in UV-damaged cells, we used human cell lines with siRNA or shRNA to knockdown C1D.

View Article and Find Full Text PDF

Cockayne syndrome (CS) is caused by mutations in CSA and CSB. The CSA and CSB proteins have been linked to both promoting transcription-coupled repair and restoring transcription following DNA damage. We show that UV stress arrests transcription of approximately 70% of genes in CSA- or CSB-deficient cells due to the constitutive presence of ATF3 at CRE/ATF sites.

View Article and Find Full Text PDF

Developmental neurotoxicity (DNT) testing performed in rats is resource-intensive (costs, time, animals) and bears the issue of species extrapolation. Thus, reliable alternative human-based approaches are needed for predicting neurodevelopmental toxicity. Human induced pluripotent stem cells (hiPSCs) represent a basis for an alternative method possibly being part of an alternative DNT testing strategy.

View Article and Find Full Text PDF
Article Synopsis
  • Mediator plays a crucial role in gene expression by connecting specific factors to the transcription machinery, but the function of individual Mediator subunits is not well understood.
  • Mutations in the MED12 gene are associated with a variety of genetic disorders, including those linked to intellectual disabilities, and specific MED12 mutations were found to cause unique expression patterns in immediate early genes like JUN, FOS, and EGR1.
  • The study suggests that the varying effects of MED12 mutations on gene expression could redefine the understanding of related syndromes, encouraging clinicians to incorporate genetic criteria into patient diagnoses.
View Article and Find Full Text PDF

Transcription starts with the assembly of pre-initiation complexes on promoters followed by their opening. Current models suggest that class II gene transcription requires ATP and the TFIIH XPB subunit to open a promoter. Here, we observe that XPB depletion surprisingly leaves transcription virtually intact.

View Article and Find Full Text PDF
Article Synopsis
  • Influenza's NS1 protein is crucial for the virus's ability to survive and thrive in its host by binding to double-stranded RNA (dsRNA) and suppressing the immune response.
  • This study reveals that NS1 can also attach to cellular double-stranded DNA (dsDNA), which prevents the necessary transcription machinery from accessing the DNA.
  • By inhibiting the expression of antiviral genes, this highlights a new method through which the influenza virus dodges the host's antiviral defenses and enhances its own replication.
View Article and Find Full Text PDF

We have defined the mechanism of action of lurbinectedin, a marine-derived drug exhibiting a potent antitumor activity across several cancer cell lines and tumor xenografts. This drug, currently undergoing clinical evaluation in ovarian, breast, and small cell lung cancer patients, inhibits the transcription process through (i) its binding to CG-rich sequences, mainly located around promoters of protein-coding genes; (ii) the irreversible stalling of elongating RNA polymerase II (Pol II) on the DNA template and its specific degradation by the ubiquitin/proteasome machinery; and (iii) the generation of DNA breaks and subsequent apoptosis. The finding that inhibition of Pol II phosphorylation prevents its degradation and the formation of DNA breaks after drug treatment underscores the connection between transcription elongation and DNA repair.

View Article and Find Full Text PDF